8-epi-prostaglandin-f2alpha and Cell-Transformation--Neoplastic

8-epi-prostaglandin-f2alpha has been researched along with Cell-Transformation--Neoplastic* in 2 studies

Other Studies

2 other study(ies) available for 8-epi-prostaglandin-f2alpha and Cell-Transformation--Neoplastic

ArticleYear
A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice.
    Cancer prevention research (Philadelphia, Pa.), 2009, Volume: 2, Issue:2

    We investigated the effects of a gamma-tocopherol-rich mixture of tocopherols (gamma-TmT, containing 57% gamma-T, 24% delta-T, and 13% alpha-T) on colon carcinogenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In experiment 1, 6-week-old male CF-1 mice were given a dose of AOM (10 mg/kg body weight, i.p.), and 1 week later, 1.5% DSS in drinking water for 1 week. The mice were maintained on either a gamma-TmT (0.3%)-enriched or a standard AIN93M diet, starting 1 week before the AOM injection, until the termination of experiment. In the AOM/DSS-treated mice, dietary gamma-TmT treatment resulted in a significantly lower colon inflammation index (52% of the control) on day 7 and number of colon adenomas (9% of the control) on week 7. gamma-TmT treatment also resulted in higher apoptotic index in adenomas, lower prostaglandin E2, leukotriene B4, and nitrotyrosine levels in the colon, and lower prostaglandin E2, leukotriene B4, and 8-isoprostane levels in the plasma on week 7. Some of the decreases were observed even on day 7. In experiment 2 with AOM/DSS- treated mice sacrificed on week 21, dietary 0.17% or 0.3% gamma-TmT treatment, starting 1 week before the AOM injection, significantly inhibited adenocarcinoma and adenoma formation in the colon (to 17-33% of the control). Dietary 0.3% gamma-TmT that was initiated after DSS treatment also exhibited a similar inhibitory activity. The present study showed that gamma-TmT effectively inhibited colon carcinogenesis in AOM/DSS-treated mice, and the inhibition may be due to the apoptosis-inducing, anti-inflammatory, antioxidative, and reactive nitrogen species-trapping activities of tocopherols.

    Topics: Adenocarcinoma; Adenoma; Animals; Antioxidants; Apoptosis; Azoxymethane; Carcinogens; Cell Transformation, Neoplastic; Cocarcinogenesis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; gamma-Tocopherol; Inflammation; Leukotriene B4; Male; Mice; Tyrosine

2009
Vitamin C and alpha-naphthoflavone prevent estrogen-induced mammary tumors and decrease oxidative stress in female ACI rats.
    Carcinogenesis, 2009, Volume: 30, Issue:7

    The mechanisms underlying the pathogenesis of estrogen-induced breast carcinogenesis remain unclear. The present study investigated the roles of estrogen metabolism and oxidative stress in estrogen-mediated mammary carcinogenesis in vivo. Female August Copenhagen Irish (ACI) rats were treated with 17beta-estradiol (E(2)), the antioxidant vitamin C, the estrogen metabolic inhibitor alpha-naphthoflavone (ANF), or cotreated with E(2) + vitamin C or E(2) + ANF for up to 8 months. E(2) (3 mg) was administered as an subcutaneous implant, ANF was given via diet (0.2%) and vitamin C (1%) was added to drinking water. At necropsy, breast tumor incidence in the E(2), E(2) + vitamin C and E(2) + ANF groups was 82, 29 and 0%, respectively. Vitamin C and ANF attenuated E(2)-induced alterations in oxidative stress markers in breast tissue, including 8-iso-prostane F(2alpha) formation and changes in the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase. Quantification of 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)) formation in breast tissue confirmed that ANF inhibited 4-hydroxylation of E(2) and decreased formation of the highly carcinogenic 4-OHE(2). These results demonstrate that antioxidant vitamin C reduces the incidence of estrogen-induced mammary tumors, increases tumor latency and decreases oxidative stress in vivo. Further, our data indicate that ANF completely abrogates breast cancer development in ACI rats. The present study is the first to demonstrate the inhibition of breast carcinogenesis by antioxidant vitamin C or the estrogen metabolic inhibitor ANF in an animal model of estrogen-induced mammary carcinogenesis. Taken together, these results suggest that E(2) metabolism and oxidant stress are critically involved in estrogen-induced breast carcinogenesis.

    Topics: Animals; Antioxidants; Ascorbic Acid; Benzoflavones; Cell Transformation, Neoplastic; Dinoprost; Estradiol; Estrogens, Catechol; Female; Mammary Neoplasms, Experimental; Neoplasms, Hormone-Dependent; Oxidative Stress; Rats; Rats, Inbred ACI

2009