8-bromocyclic-gmp has been researched along with Testicular-Neoplasms* in 1 studies
1 other study(ies) available for 8-bromocyclic-gmp and Testicular-Neoplasms
Article | Year |
---|---|
Atrial natriuretic peptide inhibits the phosphoinositide hydrolysis in murine Leydig tumor cells.
The ability of ANP to inhibit the hydrolysis of phosphoinositides was examined in [3H] myoinositol-labeled intact murine Leydig tumor (MA-10) cells. Arginine vasopressin (AVP) stimulated the formation of inositol monophosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) both in a time-and dose-dependent manner in MA-10 cells. ANP inhibited the AVP-induced formation of IP1, IP2, and IP3 in these cells. The inhibitory effect of ANP on the AVP-stimulated formation of IP1, IP2, and IP3 accounted for 30%, 38% and 42%, respectively, which was observed at the varying concentrations of AVP. ANP caused a dose-dependent attenuation in AVP-stimulated production of IP1, IP2 and IP3 with maximum inhibition at 100 nM concentration of ANP. The production of inositol phosphates was inhibited in the presence of 8-bromo cGMP in a dose-dependent manner, whereas dibutyryl-cAMP had no effect on the generation of these metabolites. The LY 83583, an inhibitor of guanylyl cyclase and cGMP production, abolished the inhibitory effect of ANP on the AVP-stimulated production of inositol phosphates. Furthermore, 10 microM LY 83583 also inhibited the ANP-stimulated guanylyl cyclase activity and the intracellular accumulation of cGMP by more than 65-70%. The inhibition of cGMP-dependent protein kinase by H-8, significantly restored the levels of AVP-stimulated inositol phosphates in the presence of either ANP or exogenous 8-bromo cGMP. The results of this study suggest that ANP exerts an inhibitory effect on the production of inositol phosphates in murine Leydig tumor (MA-10) cells by mechanisms involving cGMP and cGMP-dependent protein kinase. Topics: Aminoquinolines; Animals; Arginine Vasopressin; Atrial Natriuretic Factor; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Hydrolysis; Inositol; Leydig Cell Tumor; Male; Mice; Phosphatidylinositols; Testicular Neoplasms; Tumor Cells, Cultured | 1996 |