8-bromocyclic-gmp has been researched along with Neuralgia* in 2 studies
2 other study(ies) available for 8-bromocyclic-gmp and Neuralgia
Article | Year |
---|---|
Endogenous nitric oxide inhibits spinal NMDA receptor activity and pain hypersensitivity induced by nerve injury.
The role of nitric oxide (NO) in nociceptive transmission at the spinal cord level remains uncertain. Increased activity of spinal N-methyl-d-aspartate (NMDA) receptors contributes to development of chronic pain induced by peripheral nerve injury. In this study, we determined how endogenous NO affects NMDA receptor activity of spinal cord dorsal horn neurons in control and spinal nerve-ligated rats. Bath application of the NO precursor l-arginine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited NMDA receptor currents of spinal dorsal horn neurons in both sham control and nerve-injured rats. Inhibition of neuronal nitric oxide synthase (nNOS) or blocking the S-nitrosylation reaction with N-ethylmaleimide abolished the inhibitory effects of l-arginine on NMDA receptor currents recorded from spinal dorsal horn neurons in sham control and nerve-injured rats. However, bath application of the cGMP analog 8-bromo-cGMP had no significant effects on spinal NMDA receptor currents. Inhibition of soluble guanylyl cyclase also did not alter the inhibitory effect of l-arginine on spinal NMDA receptor activity. Furthermore, knockdown of nNOS with siRNA abolished the inhibitory effects of l-arginine, but not SNAP, on spinal NMDA receptor activity in both groups of rats. Additionally, intrathecal injection of l-arginine significantly attenuated mechanical or thermal hyperalgesia induced by nerve injury, and the l-arginine effect was diminished in rats treated with a nNOS inhibitor or nNOS-specific siRNA. These findings suggest that endogenous NO inhibits spinal NMDA receptor activity through S-nitrosylation. NO derived from nNOS attenuates spinal nociceptive transmission and neuropathic pain induced by nerve injury. Topics: Analgesics, Non-Narcotic; Animals; Arginine; Central Nervous System Agents; Cyclic GMP; Disease Models, Animal; Ethylmaleimide; Excitatory Amino Acid Antagonists; Hot Temperature; Hyperalgesia; Male; Neuralgia; Nitric Oxide; Nitric Oxide Synthase Type I; Posterior Horn Cells; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; S-Nitroso-N-Acetylpenicillamine; Soluble Guanylyl Cyclase; Spinal Nerves; Tissue Culture Techniques; Touch | 2017 |
The dual effect of a nitric oxide donor in nociception.
Low intrathecal (i.t.) doses of the nitric oxide (NO)-donor 3-morpholinosydnonimine (SIN-1) (0.1-2.0 microg/10 microl) reduced, while higher doses had no effect (5 or 100 microg/10 microl) or increased (10 and 20 microg/10 microl) the mechanical allodynia induced by chronic ligature of the sciatic nerve in rats. SIN-1 (0.1-100 microg/10 microl; i.t.) produced only antinociceptive effect in the rat tail flick test. The inhibitor of guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (4 microg/10 microl; i.t.), abolished the antinociceptive effects of SIN-1 in both tests and reduced the effect of high doses of SIN-1 in neuropathic rats. Hemoglobin (100 microg/10 microl; i.t.), a NO scavenger, inhibited the effect of low dose of SIN-1 and reduced the effect of high dose of SIN-1 in neuropathic rats. 8-Bromo-cGMP (125-500 microg/10 microl; i.t.), reduced the mechanical allodynia in neuropathic rats. The NO-synthase inhibitors, NG-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA) (75-300 microg/10 microl; i.t.) reduced the mechanical allodynia evoked by nerve injury and increased the tail-flick latency, respectively. These effects were reduced and inhibited, respectively, by previous i.t. ODQ. The effect of L-NOARG was enhanced in a non-significant manner by hemoglobin. These results indicate that SIN-1 and NO-synthase inhibitors reduce pain through a spinal mechanism that involves activation of guanylate cyclase. The effects of SIN-1 vary depending on the dose and pain model utilized, but its most sensitive effect seems to be antinociception. However, high doses of the NO-donor can intensify ongoing pain. Topics: Animals; Chronic Disease; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hemoglobins; Injections, Spinal; Ligation; Male; Molsidomine; Nerve Compression Syndromes; Neuralgia; Nitric Oxide; Nitric Oxide Donors; Nitroarginine; Nociceptors; omega-N-Methylarginine; Oxadiazoles; Pain Measurement; Quinoxalines; Rats; Rats, Wistar; Sciatic Nerve | 2001 |