8-bromocyclic-gmp and Hypertension--Portal

8-bromocyclic-gmp has been researched along with Hypertension--Portal* in 3 studies

Other Studies

3 other study(ies) available for 8-bromocyclic-gmp and Hypertension--Portal

ArticleYear
iNOS expression in vascular resident macrophages contributes to circulatory dysfunction of splanchnic vascular smooth muscle contractions in portal hypertensive rats.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 300, Issue:3

    Portal hypertension, a major complication of cirrhosis, is caused by both increased portal blood flow due to arterial vasodilation and augmented intrahepatic vascular resistance due to sinusoidal constriction. In this study, we examined the possible involvement of resident macrophages in the tone regulation of splanchnic blood vessels using bile duct ligated (BDL) portal hypertensive rats and an in vitro organ culture method. In BDL cirrhosis, the number of ED2-positive resident macrophages increased by two- to fourfold in the vascular walls of the mesenteric artery and extrahepatic portal vein compared with those in sham-operated rats. Many ED1-positive monocytes were also recruited into this area. The expression of inducible nitric oxide (NO) synthase (iNOS) mRNA was increased in the vascular tissues isolated from BDL rats, and accordingly, nitrate/nitrite production was increased. Immunohistochemistry revealed that iNOS was largely expressed in ED1-positive and ED2-positive cells. We further analyzed the effect of iNOS expression on vascular smooth muscle contraction using an in vitro organ culture system. iNOS mRNA expression and nitrate production significantly increased in vascular tissues (without endothelium) incubated with 1 μg/ml lipopolysaccharide (LPS) for 6 h. Immunohistochemistry indicated that iNOS was largely expressed in ED2-positive resident macrophages. α-Adrenergic-stimulated contractility of the mesenteric artery was greatly suppressed by LPS treatment and was restored by N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor); in contrast, portal vein contractility was largely unaffected by LPS. Sodium nitroprusside (NO donor) and 8-bromo-cGMP showed greater contractile inhibition in the mesenteric artery than in the portal vein with decreasing myosin light chain phosphorylation. In the presence of an α-adrenergic agonist, the mesenteric artery cytosolic Ca(2+) level was greatly reduced by sodium nitroprusside; however, the portal vein Ca(2+) level was largely unaffected. These results suggest that the induction of iNOS in monocytes/macrophages contributes to a hypercirculatory state in the cirrhosis model rat in which the imbalance of the responsiveness of visceral vascular walls to NO (mesenteric artery >> portal vein) may account for the increased portal venous flow in portal hypertension.

    Topics: Animals; Calcium; Cyclic GMP; Hypertension, Portal; Lipopolysaccharides; Liver Cirrhosis; Macrophages; Male; Mesenteric Arteries; Monocytes; Muscle Contraction; Muscle, Smooth, Vascular; Myosin Light Chains; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide Synthase Type II; Nitroprusside; Portal Vein; Rats; Rats, Sprague-Dawley; Splanchnic Circulation; Vasodilator Agents

2011
Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation.
    American journal of physiology. Gastrointestinal and liver physiology, 2006, Volume: 290, Issue:3

    NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.

    Topics: Adenoviridae; Animals; Calcium Signaling; Cell Line; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Humans; Hydrazines; Hypertension, Portal; Liver; Male; Nitric Oxide; Nitrogen Oxides; Oxadiazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Transduction, Genetic

2006
Impaired vasodilatory responses in the gastric microcirculation of anesthetized rats with secondary biliary cirrhosis.
    Gastroenterology, 1995, Volume: 108, Issue:4

    The increased susceptibility of the stomach to injury observed in portal hypertension may be related to a defect in the hyperemic response to luminal irritants. The aim of this study was to evaluate the components that mediate this hyperemic response in a rat model of cirrhosis and portal hypertensive gastropathy.. Cirrhosis was induced by bile duct ligation, whereas controls underwent sham operation. Gastric blood flow responses to topical application of acid, capsaicin, nitrovasodilators, misoprostol, 8-bromo-cyclic guanosine monophosphate, and 8-bromo-cyclic adenosine monophosphate were measured by laser Doppler flowmetry using an ex vivo gastric chamber preparation. Calcitonin gene-related peptide immunoreactivity was used as an index of the anatomic integrity of the sensory afferent neurons of the stomach.. Blood flow responses to acid, capsaicin, nitrovasodilators, and 8-bromo-cyclic guanosine monophosphate were significantly depressed in cirrhotic rats, whereas they were augmented after topical application of misoprostol and 8-bromo-cyclic adenosine monophosphate. Calcitonin gene-related peptide immunoreactivity was similar in the stomachs of cirrhotic and control rats.. Gastric vasodilation after stimulation of sensory afferent neurons is impaired in cirrhotic rats despite the normal anatomic distribution of these nerves. This effect seemed to be related to a depressed response of the gastric microcirculation to cyclic guanosine monophosphate-dependent vasodilators. This alteration may contribute to the increased susceptibility to gastric ulceration in cirrhotics.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Anesthesia; Animals; Calcitonin Gene-Related Peptide; Capsaicin; Cyclic GMP; Disease Models, Animal; Hyperemia; Hypertension, Portal; Laser-Doppler Flowmetry; Liver Cirrhosis, Biliary; Male; Microcirculation; Misoprostol; Neurons, Afferent; Nitroprusside; Rats; Rats, Sprague-Dawley; Stomach; Vasodilation

1995