8-bromocyclic-gmp has been researched along with Hypercapnia* in 4 studies
4 other study(ies) available for 8-bromocyclic-gmp and Hypercapnia
Article | Year |
---|---|
Nitric oxide in the potassium-induced response of the rat middle cerebral artery: a possible permissive role.
In the middle cerebral artery (MCA), the presence of nitric oxide (NO) is responsible for maintaining a more dilated state than in its absence during increases in extracellular K(+) and osmolality. The purpose of the present study was to determine whether the involvement of NO was due to (a) a direct effect of the K(+)/osmolality (K(hyper)) on the endothelium or (b) a 'permissive' role of NO. MCAs (approximately 210 microm o.d.) were isolated, cannulated with glass micropipettes, and pressurized to 85 mmHg. When K(+) (KCl) in the extraluminal bath was increased to 21 mM, the diameter increased by 15-20% with the magnitude of dilation diminishing with further increases in K(hyper). The addition of N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-5) mM), an inhibitor of nitric oxide synthase, had no significant effect on dilations at lower K(hyper) concentrations but constricted the arteries relative to the control at 51, 66, and 81 mM K(hyper). In the presence of L-NAME, the addition of an exogenous NO donor, S-nitroso-N-acetylpenicillamine (SNAP, 10(-8) M) or an analog of cGMP, 8-bromo-cGMP (6x10(-5) M), tended to restore the response of K(hyper)to near the original response. We conclude that the basal release of NO from the endothelium plays a permissive role in the K(hyper)-induced response. Topics: Animals; Cerebrovascular Circulation; Cyclic GMP; Endothelium, Vascular; Enzyme Inhibitors; Hypercapnia; Iloprost; In Vitro Techniques; Male; Middle Cerebral Artery; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Penicillamine; Potassium; Rats; Rats, Long-Evans; S-Nitroso-N-Acetylpenicillamine; Vasodilator Agents | 2001 |
Miconazole represses CO(2)-induced pial arteriolar dilation only under selected circumstances.
Previous experimental findings have led to the suggestion that guanosine 3',5'-cyclic monophosphate (cGMP) plays a permissive role in hypercapnic cerebral vasodilation. However, we recently reported that the technique used to reveal a permissive role for cGMP [cGMP repletion in the presence of nitric oxide synthase (NOS) inhibition] created a situation where CO(2) reactivity was normalized but where different mechanisms (i.e., K(+) channels) participated in the response. In the present study, we examined whether that nascent K(+)-channel dependence is related in any way to an increase in the influence of the miconazole-inhibitable cytochrome P-450 epoxygenase pathway. Using intravital microscopy and a closed cranial window system in adult rats, we measured pial arteriolar diameters during normo- and hypercapnia, first in the absence and then in the presence of a neuronal NOS (nNOS) inhibitor [7-nitroindazole (7-NI)]. This was followed by suffusion of a cGMP analog and then cGMP plus miconazole. Separate groups of rats were used to evaluate whether miconazole either alone or in the presence of 8-bromoguanosine 3', 5'-cyclic monophosphate (8-BrcGMP) or its vehicle (0.1% ethanol) had any effect on CO(2) reactivity and whether miconazole affected K(+)-channel opener-induced dilations. Hypercapnic (arterial PCO(2), congruent with65 mmHg) pial arteriolar dilations, as expected, were reduced by 70-80% with 7-NI and restored with cGMP repletion. CO(2) reactivity was again attenuated after miconazole introduction. Miconazole, with and without 8-BrcGMP, and its vehicle had no influence on pial arteriolar CO(2) reactivity in the absence of nNOS inhibition combined with cGMP repletion. Miconazole alone also did not affect vasodilatory responses to K(+)-channel openers. Thus present results suggest that the nascent K(+)-channel dependence of the hypercapnic response found in our earlier study may be related to increased epoxygenase activity. The specific reasons why the pial arteriolar CO(2) reactivity gains a K(+)-channel and epoxygenase dependence only under conditions of nNOS inhibition and cGMP restoration remain to be identified. These findings again call into question the interpretations applied to data collected in studies evaluating potential permissive actions of cGMP or NO. Topics: Animals; Arterioles; Carbon Dioxide; Cyclic GMP; Drug Combinations; Enzyme Inhibitors; Hypercapnia; Indazoles; Miconazole; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Pia Mater; Potassium Channels; Rats; Rats, Sprague-Dawley; Reference Values; Vasodilation | 1999 |
Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
The conclusion that cyclic 3'-5 guanosine monophosphate (cGMP) functions in a 'permissive' manner in promoting cerebrovasodilation during hypercapnia was based on findings showing that the nitric oxide synthase (NOS) inhibitor-induced repression of the CO2 response could be reversed upon addition of exogenous cGMP. We hypothesized that the action of cGMP revealed in those studies does not define its normal role in hypercapnic cerebral vasodilation, but rather is a unique function of the artificial situation of NOS inhibition coupled with cGMP repletion. Thus, although CO2 reactivity may be the same in normal versus cGMP-repleted animals, the factors contributing to that response may differ. To test that possibility, the effects of calcium-dependent (KCa) or ATP-sensitive (KATP) potassium channel blockers on pial arteriolar CO2 reactivity, in vivo, were evaluated in the presence and absence of NOS inhibition plus administration of a cGMP analogue. Pial arteriolar diameter changes in hypercapnia were measured in three principal groups of anesthetized rats: (I) KCa channel-inhibited (via iberiotoxin); (II) KATP channel-inhibited (via glibenclamide); and (III) controls. Group I and II rats were further divided into: (a) those treated with the neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI), followed by successive suffusions of the cGMP analogue, 8-bromo-cGMP (8Br-cGMP) and 8Br-cGMP+K-channel blocker; and (b) rats where 7-NI and 8Br-cGMP applications were omitted. Group III rats were divided into time and 8Br-cGMP controls. Hypercapnia (PCO2 congruent with60 mmHg, 3 min)-induced dilations were reduced by 70-80% following 7-NI and restored by 8Br-cGMP. That restoration was reversed by both K-channel blockers. In the absence of 7-NI and exogenous cGMP, CO2 reactivity was unaffected by K-channel inhibition. These findings confirmed that nNOS-derived NO is critically important to the hypercapnic reactivity of cerebral arterioles, and that cGMP repletion, following NOS inhibition, could restore CO2 reactivity. The observation that KCa and KATP channel blockade did not alter CO2 reactivity under baseline conditions, but attenuated CO2 reactivity only in the presence nNOS inhibition (and cGMP repletion), suggests that multiple, redundant, and interactive mechanisms participate in CO2-induced vasodilation. These results also imply that current strategies for revealing permissive actions of cGMP (or NO) may need to be re-evaluated. Topics: Adenosine Triphosphate; Animals; Benzimidazoles; Blood Pressure; Calcium; Carbon Dioxide; Cerebral Arteries; Cromakalim; Cyclic GMP; Glyburide; Hydrogen-Ion Concentration; Hypercapnia; Indazoles; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Penicillamine; Peptides; Pia Mater; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Sprague-Dawley; Substrate Specificity; Vasodilation | 1998 |
SIN-1 reverses attenuation of hypercapnic cerebrovasodilation by nitric oxide synthase inhibitors.
We sought to determine whether the attenuation of the hypercapnic cerebrovasodilation associated with inhibition of nitric oxide synthase (NOS) can be reversed by exogenous NO. Rats were anesthetized (halothane) and ventilated. Neocortical cerebral blood flow (CBF) was monitored by a laser-Doppler probe. The NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg iv) reduced resting CBF [-36 +/- 5% (SE); P < 0.01, analysis of variance] and attenuated the increase in CBF elicited by hypercapnia (partial pressure of CO2 = 50-60 mmHg) by 66% (P < 0.01). L-NAME reduced forebrain NOS catalytic activity by 64 +/- 3% (n = 10; P < 0.001). After L-NAME, intracarotid infusion of the NO donor 3-morpholinosydnonimine (SIN-1; n = 6) increased resting CBF and reestablished the CBF increase elicited by hypercapnia (P > 0.05 from before L-NAME). Similarly, infusion of the guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-bromo-cGMP (n = 6) reversed the L-NAME-induced attenuation of the hypercapnic cerebrovasodilation. The NO-independent vasodilator papaverine (n = 6) increased resting CBF but did not reverse the attenuation of the CO2 response. SIN-1 did not affect the attenuation of the CO2 response induced by indomethacin (n = 6). The observation that NO donors reverse the L-NAME-induced attenuation of the CO2 response suggests that a basal level of NO is required for the vasodilation to occur. The findings are consistent with the hypothesis that NO is not the final mediator of smooth muscle relaxation in hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amino Acid Oxidoreductases; Animals; Arginine; Cerebrovascular Circulation; Cyclic GMP; Hypercapnia; Male; Molsidomine; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Papaverine; Rats; Rats, Sprague-Dawley; Vasodilation | 1994 |