8-bromocyclic-gmp and Fibrosis

8-bromocyclic-gmp has been researched along with Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for 8-bromocyclic-gmp and Fibrosis

ArticleYear
Intracellular cyclic nucleotide analogues inhibit in vitro mitogenesis and activation of fibroblasts derived from obstructed rat kidneys.
    Nephron. Experimental nephrology, 2004, Volume: 96, Issue:2

    As several studies indirectly suggest that inhibiting the intracellular breakdown of cyclic nucleotides may inhibit fibrogenesis, this study used membrane permeable cyclic nucleotide analogues to examine the role of cAMP and cGMP signaling pathways in the regulation of renal fibroblast function. Fibroblasts were isolated by explant outgrowth culture of rat kidneys post unilateral ureteric obstruction. Subcultured cells were exposed to 10- 1,000 microM of the cyclic nucleotide analogues 8-bromo-cAMP (8br-cAMP) and 8-bromo-cGMP (8br-cGMP). Functional parameters examined included mitogenesis (thymidine incorporation), collagen synthesis (proline incorporation), myofibroblast differentiation (Western blotting for alpha-smooth muscle actin; alpha-SMA) and expression of CTGF (Northern blotting), a TGF-beta(1)-driven immediate early response gene. Serum-stimulated mitogenesis was decreased 27 +/- 4% by 100 microM 8br-cAMP (p < 0.01), 49 +/- 6% by 1,000 microM 8br-cAMP (p < 0.001) and 43 +/- 7% by 1,000 microM 8br-cGMP (p < 0.01). 1,000 microM 8br-cAMP and 8br-cGMP reduced basal collagen synthesis by 80 +/- 5 and 60 +/- 21% respectively (both p < 0.05). Maximum dose of 8br-cAMP but not 8br-cGMP inhibited basal expression of the differentiation marker alpha-SMA by 43 +/- 33 (p < 0.05), resulted in a more rounded cell morphology and reduced expression of CTGF by 39 +/- 24% (p < 0.05). Measurement of mitochondrial activity confirmed that effects were independent of cell toxicity. In conclusion, cyclic nucleotides inhibit fibrogenesis in vitro. Strategies which elevate intracellular cyclic nucleotide concentrations may therefore be therapeutically valuable in preventing the proliferation and activation of fibroblasts in progressive renal disease.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Actins; Animals; Cell Division; Cells, Cultured; Collagen; Connective Tissue Growth Factor; Cyclic AMP; Cyclic GMP; DNA; Fibroblasts; Fibrosis; Immediate-Early Proteins; Intercellular Signaling Peptides and Proteins; Kidney; Nucleotides, Cyclic; Rats; Ureteral Obstruction

2004
L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie's fibrotic plaque and related fibroblast cultures.
    Nitric oxide : biology and chemistry, 2003, Volume: 9, Issue:4

    Inducible nitric oxide synthase (iNOS) is expressed in both the fibrotic plaque of Peyronie's disease (PD) in the human, and in the PD-like plaque elicited by injection of TGFbeta1 into the penile tunica albuginea (TA) of the rat. Long-term inhibition of iNOS activity, presumably by blocking nitric oxide (NO)- and cGMP-mediated effects triggered by iNOS expression, exacerbates tissue fibrosis through an increase in: (a) collagen synthesis, (b) levels of reactive oxygen species (ROS), and (c) the differentiation of fibroblasts into myofibroblasts. We have now investigated whether: (a) phosphodiesterase (PDE) isoforms, that regulate the interplay of cGMP and cAMP pathways, are expressed in both the human and rat TA; and (b) L-arginine, that stimulates NOS activity and hence NO synthesis, and PDE inhibitors, that increase the levels of cGMP and/or cAMP, can inhibit collagen synthesis and induce fibroblast/myofibroblast apoptosis, thus acting as antifibrotic agents. We have found by immunohistochemistry, RT/PCR, and Western blot that PDE5A-3 and PDE4A, B, and D variants are indeed expressed in human and rat normal TA and PD plaque tissue, as well as in their respective fibroblast cultures. As expected, in the PD fibroblast cultures, pentoxifylline (non-specific cAMP-PDE inhibitor) increased cAMP levels without affecting cGMP levels, whereas sildenafil (PDE5A inhibitor) raised cGMP levels. Both agents and L-arginine reduced the expression of collagen I (but not collagen III) and the myofibroblast marker, alpha-smooth muscle actin, as determined by immunocytochemistry and quantitative image analysis. These effects were mimicked by incubation with 8-Br-cGMP, which in addition increased apoptosis, as measured by TUNEL. When L-arginine (2.25 g/kg/day), pentoxifylline (10 mg/kg/day), or sildenafil (10 mg/kg/day) was given individually in the drinking water for 45 days to rats with a PD-like plaque induced by TGF beta1, each treatment resulted in a 80-95% reduction in both plaque size and in the collagen/fibroblast ratio, as determined by Masson trichrome staining. Both sildenafil and pentoxiphylline stimulated fibroblast apoptosis within the TA. Our results support the hypothesis that the increase in NO and/or cGMP/cAMP levels by long-term administration of nitrergic agents or inhibitors of PDE, may be effective in reversing the fibrosis of PD, and more speculatively, other fibrotic conditions.

    Topics: Animals; Apoptosis; Arginine; Blotting, Western; Cyclic GMP; Enzyme Inhibitors; Fibrosis; Humans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Penile Induration; Penis; Pentoxifylline; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Piperazines; Purines; Rats; Rats, Inbred F344; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sildenafil Citrate; Sulfones

2003