8-bromocyclic-gmp has been researched along with Disease-Models--Animal* in 21 studies
21 other study(ies) available for 8-bromocyclic-gmp and Disease-Models--Animal
Article | Year |
---|---|
egl-4 modulates electroconvulsive seizure duration in C. elegans.
Increased neuronal excitability causes seizures with debilitating symptoms. Effective and noninvasive treatments are limited for easing symptoms, partially due to the complexity of the disorder and lack of knowledge of specific molecular faults. An unexplored, novel target for seizure therapeutics is the cGMP/protein kinase G (PKG) pathway, which targets downstream K Topics: Animals; Anticonvulsants; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Carbamates; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Electroshock; Phenylenediamines; Recovery of Function; Seizures; Signal Transduction | 2018 |
Endogenous nitric oxide inhibits spinal NMDA receptor activity and pain hypersensitivity induced by nerve injury.
The role of nitric oxide (NO) in nociceptive transmission at the spinal cord level remains uncertain. Increased activity of spinal N-methyl-d-aspartate (NMDA) receptors contributes to development of chronic pain induced by peripheral nerve injury. In this study, we determined how endogenous NO affects NMDA receptor activity of spinal cord dorsal horn neurons in control and spinal nerve-ligated rats. Bath application of the NO precursor l-arginine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited NMDA receptor currents of spinal dorsal horn neurons in both sham control and nerve-injured rats. Inhibition of neuronal nitric oxide synthase (nNOS) or blocking the S-nitrosylation reaction with N-ethylmaleimide abolished the inhibitory effects of l-arginine on NMDA receptor currents recorded from spinal dorsal horn neurons in sham control and nerve-injured rats. However, bath application of the cGMP analog 8-bromo-cGMP had no significant effects on spinal NMDA receptor currents. Inhibition of soluble guanylyl cyclase also did not alter the inhibitory effect of l-arginine on spinal NMDA receptor activity. Furthermore, knockdown of nNOS with siRNA abolished the inhibitory effects of l-arginine, but not SNAP, on spinal NMDA receptor activity in both groups of rats. Additionally, intrathecal injection of l-arginine significantly attenuated mechanical or thermal hyperalgesia induced by nerve injury, and the l-arginine effect was diminished in rats treated with a nNOS inhibitor or nNOS-specific siRNA. These findings suggest that endogenous NO inhibits spinal NMDA receptor activity through S-nitrosylation. NO derived from nNOS attenuates spinal nociceptive transmission and neuropathic pain induced by nerve injury. Topics: Analgesics, Non-Narcotic; Animals; Arginine; Central Nervous System Agents; Cyclic GMP; Disease Models, Animal; Ethylmaleimide; Excitatory Amino Acid Antagonists; Hot Temperature; Hyperalgesia; Male; Neuralgia; Nitric Oxide; Nitric Oxide Synthase Type I; Posterior Horn Cells; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; S-Nitroso-N-Acetylpenicillamine; Soluble Guanylyl Cyclase; Spinal Nerves; Tissue Culture Techniques; Touch | 2017 |
Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.
The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity. Topics: Acetylcholine; Acetylglucosamine; Adenocarcinoma; Animals; Cell Differentiation; Cell Line, Tumor; Colitis; Colon; Colorectal Neoplasms; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Female; Gastrointestinal Diseases; Gene Expression Regulation, Neoplastic; Guanylate Cyclase; Humans; Hyperalgesia; Intestinal Mucosa; Male; Mast Cells; Morphine; Multidrug Resistance-Associated Proteins; Natriuretic Peptides; Organic Anion Transporters, Sodium-Independent; Peroxidase; Rats; Rats, Sprague-Dawley; Rats, Wistar; Restraint, Physical; RNA, Messenger; Signal Transduction; Trinitrobenzenesulfonic Acid; Visceral Pain | 2013 |
Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension.
Mutations in the bone morphogenetic protein type II receptor (BMPR-II) are responsible for the majority of cases of heritable pulmonary arterial hypertension (PAH), and BMPR-II deficiency contributes to idiopathic and experimental forms of PAH. Sildenafil, a potent type-5 nucleotide-dependent phosphodiesterase inhibitor, is an established treatment for PAH, but whether sildenafil affects bone morphogenetic protein (BMP) signaling in the pulmonary circulation remains unknown.. Studies were undertaken in human pulmonary arterial smooth muscle cells (PASMCs) and in vivo in the monocrotaline rat model of PAH. In PASMCs, sildenafil enhanced BMP4-induced phosphorylation of Smad1/5, Smad nuclear localization, and Inhibitor of DNA binding protein 1 gene and protein expression. This effect was mimicked by 8-bromo-cyclic GMP. Pharmacological inhibition or small interfering RNA knockdown of cyclic GMP-dependent protein kinase I inhibited the effect of sildenafil on BMP signaling. In functional studies, we observed that sildenafil potentiated the antiproliferative effects of BMP4 on PASMC proliferation. Furthermore, sildenafil restored the antiproliferative response to BMP4 in PASMCs harboring mutations in BMPR-II. In the monocrotaline rat model of PAH, which is characterized by BMPR-II deficiency, sildenafil prevented the development of pulmonary hypertension and vascular remodeling, and partly restored Smad1/5 phosphorylation and Inhibitor of DNA binding protein 1 gene expression in vivo in monocrotaline exposed rat lungs.. Sildenafil enhances canonical BMP signaling via cyclic GMP and cyclic GMP-dependent protein kinase I in vitro and in vivo, and partly restores deficient BMP signaling in BMPR-II mutant PASMCs. Our findings demonstrate a novel mechanism of action of sildenafil in the treatment of PAH and suggest that targeting BMP signaling may be beneficial in this disease. Topics: Animals; Antihypertensive Agents; Binding Sites; Bone Morphogenetic Protein 4; Bone Morphogenetic Protein Receptors, Type II; Bone Morphogenetic Proteins; Cell Proliferation; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Disease Models, Animal; Dose-Response Relationship, Drug; Familial Primary Pulmonary Hypertension; Humans; Hypertension, Pulmonary; Inhibitor of Differentiation Protein 1; Male; Monocrotaline; Muscle, Smooth, Vascular; Mutation; Myocytes, Smooth Muscle; Phosphodiesterase 5 Inhibitors; Phosphorylation; Piperazines; Promoter Regions, Genetic; Pulmonary Artery; Purines; Rats; Rats, Sprague-Dawley; RNA Interference; Signal Transduction; Sildenafil Citrate; Smad1 Protein; Smad5 Protein; Sulfones; Transfection; Vasodilator Agents | 2013 |
Pharmacological stimulation of soluble guanylate cyclase modulates hypoxia-inducible factor-1alpha in rat heart.
Mechanical load and ischemia induce a series of adaptive physiological responses by activating the expression of O(2)-regulated genes, such as hypoxia inducible factor-1alpha (HIF-1alpha). The aim of this study was to explore the interaction between HIF-1alpha and soluble guanylate cyclase (sGC) and its second messenger cGMP in cultured cardiomyocytes exposed to hypoxia and in pressure-overloaded heart. In cultured cardiomyocytes of neonatal rats, either sGC stimulator BAY 41-2272 or cGMP analog 8-bromo-cGMP decreased the hypoxia (1% O(2)/5% CO(2))-induced HIF-1alpha expression, whereas the inhibition of protein kinase G by KT-5823 reversed the effect of BAY 41-2272 on the expression under hypoxic conditions. In pressure-overloaded heart induced by suprarenal aortic constriction (AC) in 7-wk-old male Wistar rats, the administration of BAY 41-2272 (2 mg.kg(-1).day(-1)) for 14 days significantly suppressed the protein expression of HIF-1alpha (P < 0.05), vascular endothelial growth factor (P < 0.01), and the number of capillary vessels (P < 0.01) induced by pressure overload. This study suggests that the pharmacological sGC-cGMP stimulation modulates the HIF-1alpha expression in response to hypoxia or mechanical load in the heart. Topics: Animals; Animals, Newborn; Carbazoles; Cardiomegaly; Cell Hypoxia; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Down-Regulation; Enzyme Activation; Enzyme Activators; Guanylate Cyclase; Hypertension; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Myocytes, Cardiac; Neovascularization, Physiologic; Protein Kinase Inhibitors; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Second Messenger Systems; Soluble Guanylyl Cyclase; Time Factors; Vascular Endothelial Growth Factor A; Ventricular Remodeling | 2009 |
Hyperlipidaemia induced by a high-cholesterol diet leads to the deterioration of guanosine-3',5'-cyclic monophosphate/protein kinase G-dependent cardioprotection in rats.
Hyperlipidaemia interferes with cardioprotective mechanisms, but the cause of this phenomenon is largely unknown, although hyperlipidaemia impairs the cardioprotective NO-cGMP system. However, it is not known if natriuretic peptide-cGMP-protein kinase G (PKG) signalling is affected by hyperlipidaemia. Therefore, we investigated the cardioprotective efficacy of cGMP-elevating agents in hearts from normal and hyperlipidaemic rats.. Male Wistar rats were rendered hyperlipidaemic by feeding with 2% cholesterol-enriched chow for 12 weeks. Hearts isolated from normal and hyperlipidaemic rats were perfused (Langendorff mode) and subjected to 30 min occlusion of the left main coronary artery, followed by 120 min reperfusion. 8-Br-cGMP (CG, 10 nM), B-type natriuretic peptide-32 (BNP, 10 nM), S-nitroso-N-acetyl-penicillamine (SNAP, 1 microM) were perfused from 10 min prior to coronary occlusion until the 15th min of reperfusion. Infarct size (% of ischaemic risk zone) was determined by triphenyltetrazolium staining.. Treatment with CG, SNAP or BNP decreased infarct size significantly in normal hearts from its control value of 41.6 +/- 2.9% to 15.5 +/- 2.4%, 23.3 +/- 3.0% and 25.3 +/- 4.6%, respectively (P < 0.05). Protection by BNP was abolished by co-perfusion of PKG inhibitors KT5823 (600 nM) or Rp-8pCPT-PET-cGMPs (1 microM), confirming its PKG dependence. In hearts from hyperlipidaemic rats, CG, SNAP or BNP failed to decrease infarct size. Hyperlipidaemia did not alter basal myocardial PKG content, but decreased its activity as assessed by phosphorylation of cardiac troponin I.. This is the first demonstration that defects in the cardioprotective cGMP-PKG system could be a critical biochemical anomaly in hyperlipidaemia. Topics: Animals; Cardiotonic Agents; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Dietary Fats; Disease Models, Animal; Hyperlipidemias; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Natriuretic Peptide, Brain; Phosphorylation; Rats; Rats, Wistar; S-Nitroso-N-Acetylpenicillamine; Troponin I | 2009 |
High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation.
The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity. Topics: Acetylcholine; Adaptation, Physiological; Animals; Arterioles; Blotting, Western; Coronary Vessels; Cyclic GMP; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Guanylate Cyclase; Immunohistochemistry; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroprusside; Nitroso Compounds; Obesity; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Vasodilation; Vasodilator Agents | 2008 |
Human atrial natriuretic peptide suppresses torsades de pointes in rabbits.
The increase in inward current, primarily L-type Ca2+ current, facilitates torsades de pointes (TdP). Because human atrial natriuretic peptide (ANP) moderates the L-type Ca2+ current, in our study it was hypothesized that ANP counteracts TdP.. We tested the effect of ANP, guanosine 3', 5'-cyclic monophosphate analogue (8-bromo cGMP) and hydralazine on the occurrence of TdP in a rabbit model. In control rabbits, administration of methoxamine and nifekalant almost invariably caused TdP (14/15). In contrast, ANP (10 microg . kg(-1) . min(-1)) markedly abolished TdP (2/15), whereas hydralazine failed to show a comparable anti-arrhythmic action (10/15). TdP occurred only in 1 of 15 rabbits treated with 8-bromo cGMP. Presence of early afterdepolarization-like hump in the ventricular monophasic action potential was associated with the occurrence of TdP.. Results suggest that ANP affects TdP in the rabbit model, and that this anti-arrhythmic effect of ANP is not necessarily shared by other vasodilating agents. Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Atrial Natriuretic Factor; Calcium Channels, L-Type; Cyclic GMP; Disease Models, Animal; Electrocardiography; Humans; Hydralazine; Male; Methoxamine; Pyrimidinones; Rabbits; Sympathomimetics; Torsades de Pointes; Vasodilator Agents | 2008 |
Muscarinic modulation of the sodium-calcium exchanger in heart failure.
The Na-Ca exchanger (NCX) is a critical calcium efflux pathway in excitable cells, but little is known regarding its autonomic regulation.. We investigated beta-adrenergic receptor and muscarinic receptor regulation of the cardiac NCX in control and heart failure (HF) conditions in atrially paced pigs. NCX current in myocytes from control swine hearts was significantly increased by isoproterenol, and this response was reversed by concurrent muscarinic receptor stimulation with the addition of carbachol, demonstrating "accentuated antagonism." Okadaic acid eliminated the inhibitory effect of carbachol on isoproterenol-stimulated NCX current, indicating that muscarinic receptor regulation operates via protein phosphatase-induced dephosphorylation. However, in myocytes from atrially paced tachycardia-induced HF pigs, the NCX current was significantly larger at baseline but less responsive to isoproterenol compared with controls, whereas carbachol failed to inhibit isoproterenol-stimulated NCX current, and 8-Br-cGMP did not restore muscarinic responsiveness. Protein phosphatase type 1 dialysis significantly reduced NCX current in failing but not control cells, consistent with NCX hyperphosphorylation in HF. Protein phosphatase type 1 levels associated with NCX were significantly depressed in HF pigs compared with control, and total phosphatase activity associated with NCX was significantly decreased.. We conclude that the NCX is autonomically modulated, but HF reduces the level and activity of associated phosphatases; defective dephosphorylation then "locks" the exchanger in a highly active state. Topics: Adrenergic beta-Agonists; Animals; Carbachol; Cardiac Pacing, Artificial; Cell Separation; Cells, Cultured; Cyclic GMP; Disease Models, Animal; Drug Antagonism; Female; Heart Failure; Isoproterenol; Male; Muscarinic Agonists; Myocytes, Cardiac; Niflumic Acid; Patch-Clamp Techniques; Phosphoprotein Phosphatases; Phosphorylation; Receptors, Adrenergic, beta; Receptors, Muscarinic; Sodium-Calcium Exchanger; Swine; Tachycardia | 2007 |
Intrathecal cGMP elicits pressor responses and maintains mean blood pressure during haemorrhage in anaesthetized rats.
The intracellular second messenger, cyclic guanosine monophosphate (cGMP), a soluble guanylate cyclase (GC) product, is a primary mechanism for the transduction of a nitric oxide (NO)-initiated signal in the central nervous system. NO is produced from L-arginine by neuronal nitric oxide synthase (NOS), which is found in sympathetic preganglionic neurons of the intermediolateral cell column. This suggests the possibility that NO is a modulator of sympathetic nervous activity (SNA) through a cGMP-mediated mechanism. The aim of this study was to determine the effects of intrathecally injected membrane-permeant 8-bromo-cGMP and 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of the soluble form of GC, on arterial pressure in urethane anaesthetized (1.4 g kg(-1) I.P.) rats. The effects of intrathecal cGMP and ODQ on haemodynamic responses to haemorrhage were also investigated. Finally, L-arginine, the NO precursor, was also injected intrathecally, alone and in the presence of ODQ. Baseline mean arterial pressure (MAP) increased significantly after intrathecal 8-Br-cGMP injection (10 microl, 1, 3, 10, 30, 100 microm). A dose-effect relationship (1 microm to 100 microm) was also established (EC(50)=6.03 microm). During continuous haemorrhage, MAP was maintained in animals injected with 8-Br-cGMP, relative to the control group. Although no change in baseline MAP was observed as a result of intrathecal ODQ injection (10 microl, 100 mM), a greater rate of fall in MAP was observed during haemorrhage. Injecting L-arginine (10, 100, 1000 microm, 10 microl) showed a pressor effect that was consistent with the effect of the downstream messenger, cGMP. Furthermore, its pressor effect was blocked by ODQ pre-administration. The results indicate that cGMP increases blood pressure, and thus suggest that cGMP increases SNA. This supports the hypothesis that the sympathoexcitatory effects of spinal delivery of NO are mediated by a cGMP-dependent mechanism. Topics: Anesthesia; Animals; Arginine; Blood Pressure; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guanylate Cyclase; Heart Rate; Hemorrhage; Injections, Spinal; Nitric Oxide; Oxadiazoles; Pressoreceptors; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase; Sympathetic Nervous System | 2007 |
Heart failure reduces both the effects and interaction between cyclic GMP and cyclic AMP.
We tested the hypothesis that the negative functional effects of cyclic GMP would be attenuated by cyclic AMP and this interaction would be reduced in pacing-induced failure of hypertrophic hearts.. 8-Bromo-cGMP (2 microg/kg/min) was infused into a coronary artery in eight control, eight ventricular hypertrophy (HYP), and eight hypertrophic failure (HYP-FAIL) dogs. Then isoproterenol (0.1 microg/kg/min) was infused, followed by 8 Br-cGMP. Regional myocardial work (force*shortening/min), and O(2) consumption (VO(2)) (coronary blood flow*O(2) extraction) were measured. Cyclic GMP levels were determined by radioimmunoassay.. 8-Br-cGMP significantly decreased regional work from 3812 +/- 839 g*mm/min by 17% and VO(2) by 29% in control, but not in HYP (1073 +/- 182 by -10%, VO(2) by -16%) or HYP-FAIL (495 +/- 145 by -9%, VO(2) by 0%). Isoproterenol increased work by 43% and VO(2) by 48% in controls and in HYP (work by 54%, VO(2) by 39%), but not in HYP-FAIL (work by -28%, VO(2) by -5%). Subsequently, 8-Br-cGMP had no effect on work or VO(2) in control (-2%, -13%), HYP (-12%, -30%), or HYP-FAIL (+13%, +14%). Cyclic AMP levels were elevated by isoproterenol in control (381 +/- 115 versus 553 +/- 119 pmol/g) and HYP (313 +/- 55 versus 486 +/- 227), but not in HYP-FAIL (300 +/- 60 versus 284 +/- 126). After isoproterenol, 8-Br-cGMP further elevated cyclic AMP in control (687 +/- 122), but not in HYP or HYP-FAIL.. In controls, cyclic AMP attenuated cyclic GMPs negative functional and metabolic effects. The effects and the interaction were blunted in the HYP and HYP-FAIL groups. Topics: Animals; Cardiac Output, Low; Cardiotonic Agents; Coronary Circulation; Coronary Vessels; Cyclic AMP; Cyclic GMP; Disease Models, Animal; Dogs; Hypertrophy, Left Ventricular; Isoproterenol; Myocardial Contraction; Myocardium; Oxygen Consumption | 2006 |
Nitrovasodilator responses in pulmonary arterioles from rats with nitrofen-induced congenital diaphragmatic hernia.
Many infants with congenital diaphragmatic hernias (CDHs) experience persistent pulmonary hypertension that is refractory to treatment with inhaled nitric oxide (NO). We have examined the responses of isolated pulmonary arterioles from prenatal and postnatal rats with and without nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether)-induced CDH to a variety of activators of the NO-cyclic guanosine monophosphate (cGMP) pathway.. Right-sided CDH was induced in fetal rats by feeding nitrofen to pregnant rats on day 12 of gestation. Control rats were fed olive oil (vehicle). Third-generation pulmonary arterioles were isolated from the right lung of prenatal rats at term and from newborn rats within 8 hours after birth. Responses to increasing concentrations of sodium nitroprusside (SNP), atrial natriuretic peptide, or 8-bromo-cGMP were measured in pulmonary arterioles from control rats and from rats with nitrofen-induced CDH. Postnatal responses to 8-bromo-cGMP were also recorded in the presence of zaprinast, a type V phosphodiesterase inhibitor.. Pulmonary arterioles from prenatal rats did not dilate in response to SNP, atrial natriuretic peptide, or 8-bromo-cGMP. Vasodilatory responses of postnatal pulmonary arterioles from control rats to SNP and 8-bromo-cGMP were significantly greater than for arterioles from rats with CDH. Zaprinast pretreatment resulted in similar responses for postnatal CDH and control arterioles to 8-bromo-cGMP.. Postnatal pulmonary arterioles from CDH rats exhibit altered nitrovasodilator responsiveness, which may be due to rapid degradation of cGMP. Topics: Animals; Arterioles; Atrial Natriuretic Factor; Cyclic GMP; Disease Models, Animal; Hernia, Diaphragmatic; Hernias, Diaphragmatic, Congenital; Hypertension, Pulmonary; Lung; Nitric Oxide; Nitroprusside; Pesticides; Phenyl Ethers; Phosphodiesterase Inhibitors; Purinones; Rats; Rats, Sprague-Dawley; Vasodilation; Vasodilator Agents | 2005 |
Alternative splicing of cGMP-dependent protein kinase I in angiotensin-hypertension: novel mechanism for nitrate tolerance in vascular smooth muscle.
Nitrate tolerance (NT) in hypertension is attributed to reduced activity of soluble guanylyl cyclase (sGC). We examined NT in basilar artery vascular smooth muscle cells (VSMCs) from control rats, rats infused with angiotensin II (Ang; 240 microg/kg per hour for 4 days), which were normotensive, and Ang-hypertensive rats (AHR; 240 microg/kg per hour for 28 days). Ca2+-activated K+ (Maxi-K) channels in VSMCs from AHR showed reduced activation by NO donor, consistent with NT. The concentration-response relationship for 8-Br-cGMP was shifted 2.5-fold to the right, indicating that abnormal sGC alone could not account for NT. Inside-out patches from AHR showed normal activation with exogenous cGMP-dependent protein kinase I (cGKI), suggesting no abnormality downstream of cGKI. We hypothesized that the reduction in apparent affinity of 8-Br-cGMP for cGKI in AHR might be due to a change in relative amounts of cGKIalpha versus cGKIbeta, since cGKIbeta is less sensitive to cGMP activators than cGKIalpha. This was substantiated by showing the following in AHR: (1) reduced effect of the cGKIalpha-selective activator 8-APT-cGMP; (2) reduced total cGKI protein (both isoforms), but an increase in cGKIbeta protein in quantitative immunofluorescence and Western blots; (3) similar changes in cGKI isoforms immunoisolated with Maxi-K channels; and (4) a large increase in cGKIbeta mRNA and a decrease in cGKIalpha mRNA in real-time PCR and Northern blots. Upregulation of cytosolic cGKIbeta was evident 4 days after Ang infusion, before development of hypertension. Our data identify a functional role for cGKIbeta in VSMCs previously ascribed exclusively to cGKIalpha. Ang-induced alternative splicing of cGKI represents a novel mechanism for reducing sensitivity to NO/cGMP. Topics: Alternative Splicing; Angiotensins; Animals; Blood Pressure; Cell Separation; Cyclic GMP; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Drug Tolerance; Female; Guanylate Cyclase; Hypertension; Isoenzymes; Large-Conductance Calcium-Activated Potassium Channels; Muscle, Smooth, Vascular; Nitrates; Nitric Oxide; Nitric Oxide Donors; Patch-Clamp Techniques; Phosphoric Diester Hydrolases; Potassium Channels, Calcium-Activated; Protein Kinase C; Rats; Rats, Inbred WKY; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Soluble Guanylyl Cyclase | 2003 |
Altered vascular function in fetal programming of hypertension.
Reduced endothelium-dependent vasorelaxation partly due to loss of nitric oxide (NO) bioavailability occurs in most cases of chronic hypertension. Intrauterine nutritional deprivation has been associated with increased risk for hypertension and stroke, associated with relaxant dysfunction and decreased vascular compliance, but the underlying mechanisms are not known. The present studies were undertaken to investigate whether endothelial dysfunction associated with altered NO-dependent vasodilatation pathways is also observed in a model of in utero programming of hypertension.. Pregnant Wistar rats were fed a normal (18%), low (9%), or very low (6%) protein isocaloric diet during gestation. Vasomotor response of resistance cerebral microvessels (<50 micro m) was studied in adult offspring of dams fed the 18% and 9% protein diets by a video imaging technique. Endothelial NOS (eNOS), soluble guanylate cyclase (sGC), and K(Ca) channel expression were measured by Western blot. NO synthase (NOS) activity was measured enzymatically as well as in situ by NADPH diaphorase staining.. Litter size and survival to adulthood were not affected by the diets. Birth weights of offspring of dams fed the 6% diet were markedly lower than those of dams fed the 9% diet, which were marginally lower than those of controls. Systolic blood pressures of adult offspring of mothers in the 6% and 9% groups were comparably greater (156+/-2 and 155+/-1 mm Hg, respectively) than that of control offspring (137+/-1 mm Hg); we therefore focused on the 9% and 18% groups. Cerebral microvessel constriction to thromboxane A(2) mimetic and dilation to carba-prostaglandin I(2) did not differ between diet groups. In contrast, vasorelaxation to the NO-dependent agents substance P and acetylcholine was diminished by 50% in low protein-exposed offspring, but eNOS expression and activity were similar between the 2 diet groups. Vasorelaxant response to the NO donor sodium nitroprusside was also decreased and was associated with reduced (by 50% to 65%) cGMP levels and sGC expression. cGMP analogues caused comparable vasorelaxation in the 2 groups. Expression of K(Ca) (another important mediator of NO action) and relaxation to the K(Ca) opener NS1619 were unchanged by antenatal diet.. Maternal protein deprivation, which leads to hypertension in the offspring, is associated with diminished NO-dependent relaxation of major organ (cerebral) microvasculature, which seems to be largely attributed to decreased sGC expression and cGMP levels. The study provides an additional explanation for abnormal vasorelaxation in nutrient-deprived subjects in utero. Topics: Animals; Chronic Disease; Cyclic GMP; Dietary Proteins; Disease Models, Animal; Endothelium, Vascular; Enzyme Inhibitors; Female; Guanylate Cyclase; Hypertension; In Vitro Techniques; Microcirculation; Neurotransmitter Agents; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Pia Mater; Pregnancy; Prenatal Exposure Delayed Effects; Protein Deficiency; Rats; Rats, Wistar; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase; Vasodilation; Vasodilator Agents; Vasomotor System | 2002 |
Cytokine-induced nitric oxide production inhibits mitochondrial energy production and impairs contractile function in rat cardiac myocytes.
The present study examined whether nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) can directly inhibit aerobic energy metabolism and impair cell function in interleukin (IL)-1beta,-stimulated cardiac myocytes.. Recent reports have indicated that excessive production of NO induced by cytokines can disrupt cellular energy balance through the inhibition of mitochondrial respiration in a variety of cells. However, it is still largely uncertain whether the NO-induced energy depletion affects myocardial contractility.. Primary cultures of rat neonatal cardiac myocytes were prepared, and NO2-/NO3- (NOx) in the culture media was measured using Griess reagent.. Treatment with IL-1beta (10 ng/ml) increased myocyte production of NOx in a time-dependent manner. The myocytes showed a concomitant significant increase in glucose consumption, a marked increase in lactate production, and a significant decrease in cellular ATP (adenosine 5'-triphosphate). These metabolic changes were blocked by co-incubation with N(G)-monomethyl-L-arginine (L-NMMA), an inhibitor of NO synthesis. Sodium nitroprusside (SNP), a NO donor, induced similar metabolic changes in a dose-dependent manner, but 8-bromo-cyclic guanosine 3',5'-monophosphate (8-bromo-cGMP), a cGMP donor, had no effect on these parameters. The activities of the mitochondrial iron-sulfur enzymes, NADH-CoQreductase and succinate-CoQreductase, but not oligomycin-sensitive ATPase, were significantly inhibited in the IL-1beta, or SNP-treated myocytes. Both IL-1beta and SNP significantly elevated maximum diastolic potential, reduced peak calcium current (I(Ca)), and lowered contractility in the myocytes. KT5823, an inhibitor of cGMP-dependent protein kinase, did not block the electrophysiological and contractility effects.. These data suggest that IL-1beta-induced NO production in cardiac myocytes lowers energy production and myocardial contractility through a direct attack on the mitochondria, rather than through cGMP-mediated pathways. Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Cells, Cultured; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Energy Metabolism; Glucose; Glycolysis; Inflammation; Interleukin-1; Lactic Acid; Mitochondria, Heart; Myocardial Contraction; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Nitroprusside; omega-N-Methylarginine; Rats | 2000 |
Characterization of acute reversible systemic hypertension in a model of heme protein-induced renal injury.
In the glycerol model of renal injury we describe an acute rise in systemic arterial pressure which is attended by a reduced vasodilatory response to acetylcholine in vivo; vasodilatory responses to verapamil, however, were not impaired. Neither arginine nor sodium nitroprusside diminished this rise in blood pressure; N(omega)-nitro-L-arginine methyl ester (L-NAME) elevated basal mean arterial pressure and markedly blunted the rise in mean arterial pressure following the administration of glycerol. Aortic rings from the glycerol-treated rat demonstrate an impaired vasodilatory response to acetylcholine, an effect not repaired by arginine; the vasodilatory responses to nitric oxide donors, sodium nitroprusside and SIN-1, were also impaired; 8-bromo-cGMP, at higher doses, evinced a vasodilatory response comparable to that observed in the control rings. This pattern of responses was not a nonspecific effect of aortic injury, since aortic rings treated with mercuric chloride, a potent oxidant, displayed an impaired vasodilatory response to acetylcholine but not to sodium nitroprusside. We conclude that in the glycerol model of heme protein-induced tissue injury, there is an acute elevation in mean arterial pressure attended by impaired endothelium-dependent vasodilatation in vitro and in vivo. We suggest that the acute scavenging of nitric oxide by heme proteins depletes the blood vessel wall of its endogenous vasodilator and permeation of heme proteins into the blood vessel wall may contribute to such sustained effects as observed in vitro. Topics: Acetylcholine; Acute Disease; Animals; Blood Pressure; Cyclic GMP; Disease Models, Animal; Glycerol; Hemeproteins; Hypertension; Kidney; Male; Nitroprusside; Rats; Rats, Sprague-Dawley; Vasodilator Agents | 1999 |
Effect of coadministration of caffeine and either adenosine agonists or cyclic nucleotides on ketorolac analgesia.
Caffeine potentiation of ketorolac-induced antinociception in the pain-induced functional impairment model in rats was assessed. Caffeine alone was ineffective, but increased the effect of ketorolac without affecting its pharmacokinetics. Intra-articular administration of adenosine and N6-cyclohexyladenosine (CHA, an adenosine A1 receptor agonist), but not 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, an adenosine A2A receptor agonist), significantly increased ketorolac antinociception. This effect was not local, as contralateral administration was also effective. Ipsilateral and contralateral administration of adenosine and CHA also increased antinociception by ketorolac-caffeine. Intra-articular 8-Bromo-adenosine cyclic 3',5'-hydrogen phosphate sodium or 8-Bromo-guanosine-3',5'-cyclophosphate sodium (cGMP) given ipsilaterally or contralaterally did not affect ketorolac-induced antinociception. Nevertheless, ipsilateral, but not contralateral, administration of 8-Br-cGMP significantly increased antinociception by ketorolac-caffeine, suggesting a local effect. The results suggest that caffeine potentiation of ketorolac antinociception is mediated, at least partially, by a local increase in cGMP and rule out the participation of adenosine receptor blockade. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Administration, Topical; Analgesics, Non-Narcotic; Animals; Caffeine; Central Nervous System Stimulants; Cyclic GMP; Cyclohexylamines; Disease Models, Animal; Drug Synergism; Female; Ketorolac; Pain; Pain Measurement; Purinergic P1 Receptor Agonists; Rats; Rats, Wistar; Time Factors | 1999 |
Compared effects of natriuretic peptides on ovalbumin-induced asthmatic model.
We compared the effects of natriuretic peptides on antigen-induced bronchoconstriction and airway microvascular leakage in sensitized guinea pigs. Anesthetized male guinea pigs, ventilated via a tracheal cannula, were placed in a plethysmograph to measure pulmonary mechanics for 10 min after challenge with 1 mg/kg of ovalbumin, and then Evans blue dye was extravasated into airway tissue in order to indicate and evaluate microvascular leakage. Three separate intravenous pretreatments using atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) significantly inhibited the ovalbumin-induced bronchoconstriction and microvascular leakage in a dose-dependent manner. These inhibitory effects were mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate. We showed that the rank order of inhibitory potencies, which were mediated by cyclic guanosine 3',5'-monophosphate, was BNP > or = ANP > or = CNP. These results gave us some clues for the clinical application of the natriuretic peptides. Topics: Animals; Antigens; Asthma; Atrial Natriuretic Factor; Blood Pressure; Bronchi; Bronchoconstriction; Capillary Permeability; Cyclic GMP; Disease Models, Animal; Guinea Pigs; Leukotriene D4; Male; Natriuretic Peptide, Brain; Natriuretic Peptide, C-Type; Nerve Tissue Proteins; Ovalbumin; Proteins; Trachea | 1998 |
Impaired vasodilatory responses in the gastric microcirculation of anesthetized rats with secondary biliary cirrhosis.
The increased susceptibility of the stomach to injury observed in portal hypertension may be related to a defect in the hyperemic response to luminal irritants. The aim of this study was to evaluate the components that mediate this hyperemic response in a rat model of cirrhosis and portal hypertensive gastropathy.. Cirrhosis was induced by bile duct ligation, whereas controls underwent sham operation. Gastric blood flow responses to topical application of acid, capsaicin, nitrovasodilators, misoprostol, 8-bromo-cyclic guanosine monophosphate, and 8-bromo-cyclic adenosine monophosphate were measured by laser Doppler flowmetry using an ex vivo gastric chamber preparation. Calcitonin gene-related peptide immunoreactivity was used as an index of the anatomic integrity of the sensory afferent neurons of the stomach.. Blood flow responses to acid, capsaicin, nitrovasodilators, and 8-bromo-cyclic guanosine monophosphate were significantly depressed in cirrhotic rats, whereas they were augmented after topical application of misoprostol and 8-bromo-cyclic adenosine monophosphate. Calcitonin gene-related peptide immunoreactivity was similar in the stomachs of cirrhotic and control rats.. Gastric vasodilation after stimulation of sensory afferent neurons is impaired in cirrhotic rats despite the normal anatomic distribution of these nerves. This effect seemed to be related to a depressed response of the gastric microcirculation to cyclic guanosine monophosphate-dependent vasodilators. This alteration may contribute to the increased susceptibility to gastric ulceration in cirrhotics. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Anesthesia; Animals; Calcitonin Gene-Related Peptide; Capsaicin; Cyclic GMP; Disease Models, Animal; Hyperemia; Hypertension, Portal; Laser-Doppler Flowmetry; Liver Cirrhosis, Biliary; Male; Microcirculation; Misoprostol; Neurons, Afferent; Nitroprusside; Rats; Rats, Sprague-Dawley; Stomach; Vasodilation | 1995 |
Hypoxia causes an abnormal contractile response in the atherosclerotic rabbit aorta. Implication of reduced nitric oxide and cGMP production.
Both atherosclerotic lesions and hypoxia alter the contractile properties of the arterial wall and, in particular, may interfere with the relaxation mechanisms dependent or not on the endothelium. The present study was designed to test the effect of severe hypoxia on the contractile behavior of the atherosclerotic rabbit aorta. Segments of aortas obtained from control, cholesterol-fed, or Watanabe hereditary hyperlipidemic rabbits were mounted in organ chambers for isometric tension recording. A change of the bath PO2 from "normoxic" conditions (95% O2-5% CO2) to "hypoxic" conditions (95% N2-5% CO2) caused relaxation in the precontracted control aortas (by approximately 85%) but a transient contraction (approximately 20% of the maximal contraction obtained with 30 mM KCl) followed by a relaxation in the precontracted atherosclerotic aortas. Both types of responses were observed in aortas contracted with aggregating platelets, 5-hydroxytryptamine (5-HT), norepinephrine, endothelin, and prostaglandin F2 alpha. The hypoxic contractions in atherosclerosis were not dependent on the presence of an intact endothelium. They could not be antagonized by blockers of alpha-adrenoceptors, 5-HT2 receptors, histamine receptors, thromboxane receptors, and muscarinic cholinoreceptors. Inhibitors of cyclooxygenase, lipoxygenase, Na+, K(+)-ATPase, and free radical scavengers or an activator of endothelium-derived relaxing factor did not significantly affect the hypoxic contraction; the absence of effect of some inhibitors of protein synthesis seems to rule out the involvement of endothelin, angiotensin II, and bradykinin. The hypoxic contraction was not influenced by omission of Ca2+ from the medium or by inhibition of Ca2+ influx but was prevented by blockade of intracellular Ca2+. The inhibitor of nitric oxide synthase (nitro-L-arginine, 100 microM) and the guanylyl cyclase inhibitor (methylene blue, 10 microM) both enhanced the initial contractile responses to 5-HT to a similar extent as hypoxia and completely prevented the hypoxic contraction in the atherosclerotic tissues. The cyclic nucleotide analogues 8-bromo-cGMP and dibutyryl cAMP also inhibited the hypoxic contraction in the atherosclerotic aorta. The cGMP levels were markedly decreased and the cAMP levels were moderately decreased in the aortas of the cholesterol-fed rabbits as compared with the control aortas. Hypoxia further decreased cGMP but not the cAMP levels in atherosclerotic aortas with and without endo Topics: Animals; Aorta; Arginine; Arteriosclerosis; Calcium; Cell Hypoxia; Cyclic GMP; Disease Models, Animal; Endothelium, Vascular; Male; Methylene Blue; Nitric Oxide; Nitroarginine; Rabbits; Serotonin; Vasoconstriction | 1993 |
Hypersecretion induced by Escherichia coli heat-stable enterotoxin in intestinal loops in rat and mouse.
Topics: Animals; Bacterial Toxins; Bile; Body Fluids; Chlorpromazine; Cyclic GMP; Disease Models, Animal; Enterotoxins; Escherichia coli; Escherichia coli Proteins; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Rats; Rats, Inbred Strains | 1983 |