8-bromo cyclic adenosine monophosphate has been researched along with Diabetes Mellitus, Type 1 in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (25.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
MARBLE, A; STEPHENS, JW | 1 |
Liu, XF; Shimoni, Y | 1 |
Kurland, IJ; Pei, L; Tontonoz, P; Vaitheesvaran, B; Waki, H; Wilpitz, DC | 1 |
Beshay, E; Croze, F; Prud'homme, GJ | 1 |
4 other study(ies) available for 8-bromo cyclic adenosine monophosphate and Diabetes Mellitus, Type 1
Article | Year |
---|---|
Place and value of summer camps in management of juvenile diabetes; observations and a report of activities at a camp for diabetic boys in 1950.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Child; Diabetes Mellitus; Diabetes Mellitus, Type 1; Disease Management; Humans; Infant | 1951 |
Gender differences in ANG II levels and action on multiple K+ current modulation pathways in diabetic rats.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Action Potentials; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Electric Conductivity; Enzyme Inhibitors; Female; Genistein; Indoles; Male; Maleimides; Myocytes, Cardiac; Patch-Clamp Techniques; Potassium Channels; Protein Kinase C; Protein-Tyrosine Kinases; Quinapril; Rats; Rats, Sprague-Dawley; Sex Characteristics; Signal Transduction; Tetrahydroisoquinolines; Thionucleotides | 2004 |
NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; DNA-Binding Proteins; Glucagon; Gluconeogenesis; Glucose; Humans; Hyperglycemia; Liver; Male; Mice; Nuclear Receptor Subfamily 4, Group A, Member 1; Nuclear Receptor Subfamily 4, Group A, Member 2; Receptors, Cytoplasmic and Nuclear; Receptors, Steroid; Transcription Factors | 2006 |
The phosphodiesterase inhibitors pentoxifylline and rolipram suppress macrophage activation and nitric oxide production in vitro and in vivo.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Autoimmune Diseases; Bucladesine; Cells, Cultured; Colforsin; Cyclic AMP; Diabetes Mellitus, Type 1; Dibutyryl Cyclic GMP; Disease Models, Animal; Drug Evaluation, Preclinical; Enterotoxins; Enzyme Induction; Female; Interferon-gamma; Interleukin-12; Lipopolysaccharides; Macrophage Activation; Macrophages, Peritoneal; Mice; Mice, Inbred NOD; Nitric Oxide; Nitric Oxide Synthase; Nitrites; Pentoxifylline; Phosphodiesterase Inhibitors; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Rolipram; Tumor Necrosis Factor-alpha | 2001 |