8-9-epoxyeicosatrienoic-acid has been researched along with Hyperhomocysteinemia* in 1 studies
1 other study(ies) available for 8-9-epoxyeicosatrienoic-acid and Hyperhomocysteinemia
Article | Year |
---|---|
Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia.
Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase-9 (MMP-9). Cytochrome P450 (CYP) epoxygenase-2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF-kappabeta. However, the underlying molecular mechanisms for MMP-9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)-induced MMP-9 activation. CYP2J2 was over-expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF-kappabeta-mediated MMP-9 regulation were evaluated using Western blot, in-gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K-dependent AKT signal. Hcy induced the nuclear translocation of NF-kappabeta via downregulation of IKbetaalpha (endogenous cytoplasmic inhibitor of NF-kappabeta). Hcy induced MMP-9 activation by increasing NF-kappabeta-DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9-EET phosphorylated the AKT and attenuated Hcy-induced MMP-9 activation. This occurred, in part, by the inhibition of NF-kappabeta nuclear translocation, NF-kappabeta-DNA binding and activation of IKbetaalpha. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP-9 signal. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cells, Cultured; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Enzyme Activation; Enzyme Induction; Homocysteine; Hyperhomocysteinemia; I-kappa B Proteins; Matrix Metalloproteinase 9; Mice; NF-KappaB Inhibitor alpha; Oxygenases; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Transcription Factor RelA; Transfection | 2008 |