8-9-epoxyeicosatrienoic-acid and Disease-Models--Animal

8-9-epoxyeicosatrienoic-acid has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for 8-9-epoxyeicosatrienoic-acid and Disease-Models--Animal

ArticleYear
Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture.
    Hypertension (Dallas, Tex. : 1979), 2020, Volume: 76, Issue:1

    Epoxyeicosatrienoic acids (EETs) are epoxy fatty acids that have biological actions that are essential for maintaining water and electrolyte homeostasis. An inability to increase EETs in response to a high-salt diet results in salt-sensitive hypertension. Vasodilation, inhibition of epithelial sodium channel, and inhibition of inflammation are the major EET actions that are beneficial to the heart, resistance arteries, and kidneys. Genetic and pharmacological means to elevate EETs demonstrated antihypertensive, anti-inflammatory, and organ protective actions. Therapeutic approaches to increase EETs were then developed for cardiovascular diseases. sEH (soluble epoxide hydrolase) inhibitors were developed and progressed to clinical trials for hypertension, diabetes mellitus, and other diseases. EET analogs were another therapeutic approach taken and these drugs are entering the early phases of clinical development. Even with the promise for these therapeutic approaches, there are still several challenges, unexplored areas, and opportunities for epoxy fatty acids.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Cardiovascular Diseases; Cytochrome P-450 Enzyme System; Disease Models, Animal; Epoxide Hydrolases; Forecasting; Humans; Hypertension; Kidney; Kidney Diseases; Mice; Natriuresis; Potassium; Rats; Rats, Inbred Dahl; Sodium Chloride; Sodium Chloride, Dietary; Vasodilation; Water-Electrolyte Balance; Water-Electrolyte Imbalance

2020
EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice.
    American journal of hypertension, 2016, Volume: 29, Issue:5

    The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction.. Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia.. All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP.. EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH).

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arterial Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Hypoxia; Infusions, Intravenous; Male; Mice, Inbred C57BL; Pulmonary Artery; Time Factors; Ventricular Function, Right; Ventricular Pressure

2016
Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 300, Issue:6

    Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (V(max)) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg(-1)·day(-1) for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED(50) 10(-10) M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED(50) 10(-9) M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Benzoic Acid; Blood Pressure; Disease Models, Animal; Epoxide Hydrolases; Erythrocytes; Hypertension; Male; Rats; Rats, Inbred SHR; Rats, Inbred WKY

2011
Chick chorioallantoic membrane as an in vivo model to study vasoreactivity: characterization of development-dependent hyperemia induced by epoxyeicosatrienoic acids (EETs).
    The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 2005, Volume: 285, Issue:2

    Shell-less culture of chick chorioallantoic membrane (CAM) of developing chicken embryos is a useful model to evaluate the effects of vascular agents. We assessed the response of CAM vessels to epoxyeicosatrienoic acids (EETs), derivatives of the essential fatty acid arachidonic acid, that have a number of important biological functions, including dilation of microvessels in the coronary, cerebral, renal, and mesenteric circulations. Three of four regioisomers of EETs, 14,15-, 11,12-, and 8,9-EET, induced a characteristic dose-dependent acute hyperemia within 4 min after application on 10-day-old CAMs. This response was marked in early stages of development (between days 8 and 10), but the frequency and intensity of the response were reduced after 11 days of development. Histological examination demonstrated that the hyperemia was not due to extravasation of erythrocytes. However, many capillaries were distended and contained densely packed erythrocytes as compared to uniformly arranged vessels and erythrocytes in untreated CAMs. Transmission electron microscopy showed the basal laminae surrounding capillaries remained intact, similar to those in vehicle-treated or untreated CAM tissue. The hyperemia was specific to EETs since we did not observe it to be induced by other vasodilators such as nitric oxide or prostacyclin. In conclusion, we report a novel vascular response to EETs using the CAM as an in vivo model. These lipids specifically distend a subset of capillaries in a dose- and development-dependent manner.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Capillaries; Chick Embryo; Chorioallantoic Membrane; Culture Techniques; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperemia; Neovascularization, Physiologic; Nitric Oxide Donors; Time Factors; Vasodilator Agents; Vitelline Membrane

2005