8-11-14-eicosatrienoic-acid and Renal-Insufficiency

8-11-14-eicosatrienoic-acid has been researched along with Renal-Insufficiency* in 2 studies

Other Studies

2 other study(ies) available for 8-11-14-eicosatrienoic-acid and Renal-Insufficiency

ArticleYear
Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula.
    Physiological research, 2015, Volume: 64, Issue:6

    The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.

    Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzoates; Disease Models, Animal; Drug Evaluation, Preclinical; Epoxide Hydrolases; Epoxy Compounds; Heart Failure; Kidney; Male; Myocardium; Peptide Fragments; Random Allocation; Rats; Renal Insufficiency; Renin-Angiotensin System; Ultrasonography; Urea

2015
High-calcium vs high-phosphate intake and small artery tone in advanced experimental renal insufficiency.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2006, Volume: 21, Issue:10

    Disturbed calcium-phosphorus balance significantly contributes to uraemic changes in large arteries. We examined the influences of high-calcium and high-phosphate intake on small artery tone in experimental renal insufficiency.. Sixty-five rats were assigned to 5/6 nephrectomy (NTX) or sham operation. After 15 week disease progression, NTX rats were given high-calcium (3%), high-phosphate (1.5%) or control diet (0.3% calcium, 0.5% phosphate) for 12 weeks. Then isolated segments of small mesenteric arteries were studied using wire and pressure myographs.. Subtotal nephrectomy reduced creatinine clearance by 60% and increased parathyroid hormone (PTH) and phosphate 12-fold and 2.7-fold, respectively. High-phosphate intake further elevated PTH and phosphate (33-fold and 5.5-fold, respectively), while the calcium diet suppressed them (to 3.5 and 62% vs sham, respectively). Ventricular B-type natriuretic peptide synthesis was increased, and blood pressure was 27 and 18 mmHg higher in NTX rats on control and phosphate diet, respectively, than in calcium-fed rats. Vasorelaxation to acetylcholine was impaired by approximately 50% in uraemic rats, and was further deteriorated by high-phosphate intake, whereas the calcium diet improved endothelium-mediated relaxation via nitric oxide and potassium channels. Small arteries of all NTX groups featured eutrophic inward remodelling: wall-to-lumen ratio was increased 1.3-fold without change in cross-sectional area.. High-phosphate intake had a detrimental influence on secondary hyperparathyroidism and vasodilatation, whereas high-calcium intake reduced blood pressure and PTH, alleviated volume overload and improved vasorelaxation in experimental renal insufficiency. Therefore, alterations in the calcium-phosphorus balance can significantly modulate small artery tone during impaired kidney function.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Arteries; Blood Pressure; Calcium; Calcium, Dietary; Creatine; Dose-Response Relationship, Drug; Endothelium; Hyperparathyroidism; In Vitro Techniques; Male; Mesenteric Arteries; Nitroprusside; Parathyroid Hormone; Phosphates; Phosphorus, Dietary; Random Allocation; Rats; Rats, Sprague-Dawley; Renal Insufficiency; Time Factors; Vasodilation

2006