8-11-14-eicosatrienoic-acid has been researched along with Hypoxia* in 11 studies
11 other study(ies) available for 8-11-14-eicosatrienoic-acid and Hypoxia
Article | Year |
---|---|
Cytochrome P450 epoxygenase-derived 5,6-epoxyeicosatrienoic acid relaxes pulmonary arteries in normoxia but promotes sustained pulmonary vasoconstriction in hypoxia.
The aim of the study was to investigate the role of cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) in sustained hypoxic pulmonary vasoconstriction (HPV).. Vasomotor responses of isolated mouse intrapulmonary arteries (IPAs) were assessed using wire myography. Key findings were verified by haemodynamic measurements in isolated perfused and ventilated mouse lungs.. Pharmacological inhibition of EET synthesis with MS-PPOH, application of the EET antagonist 14,15-EEZE or deficiency of CYP2J isoforms suppressed sustained HPV. In contrast, knockdown of EET-degrading soluble epoxide hydrolase or its inhibition with TPPU augmented sustained HPV almost twofold. All EET regioisomers elicited relaxation in IPAs pre-contracted with thromboxane mimetic U46619. However, in the presence of KCl-induced depolarization, 5,6-EET caused biphasic contraction in IPAs and elevation of pulmonary vascular tone in isolated lungs, whereas other regioisomers had no effect. In patch-clamp experiments, hypoxia elicited depolarization in pulmonary artery smooth muscle cells (PASMCs), and 5,6-EET evoked inward whole cell currents in PASMCs depolarized to the hypoxic level, but not at their resting membrane potential.. The EET pathway substantially contributes to sustained HPV in mouse pulmonary arteries. 5,6-EET specifically appears to be involved in HPV, as it is the only EET regioisomer able to elicit not only relaxation, but also sustained contraction in these vessels. 5,6-EET-induced pulmonary vasoconstriction is enabled by PASMC depolarization, which occurs in hypoxia. The discovery of the dual role of 5,6-EET in the regulation of pulmonary vascular tone may provide a basis for the development of novel therapeutic strategies for treatment of HPV-related diseases. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cytochrome P-450 Enzyme System; Hypoxia; Lung; Mice; Pulmonary Artery; Vasoconstriction; Vasodilation | 2020 |
EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice.
The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction.. Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia.. All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP.. EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH). Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arterial Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Hypoxia; Infusions, Intravenous; Male; Mice, Inbred C57BL; Pulmonary Artery; Time Factors; Ventricular Function, Right; Ventricular Pressure | 2016 |
Contribution of epoxyeicosatrienoic acids to the cerebral blood flow response to hypoxemia.
Adenosine A2A receptors and ATP-activated K(+) (KATP) channels contribute to part of the cerebral vasodilatory response to systemic hypoxia, but other mediators are likely involved. Epoxyeicosatrienoic acids (EETs) are cerebral vasodilators and are released from astrocytes exposed to hypoxia. Moreover, stimulation of metabotropic glutamate receptors (mGluR) produces vasodilation by an EET-dependent mechanism. Here, we tested the hypothesis that EET signaling and mGluR activation contribute to hypoxic vasodilation. Laser-Doppler flow was measured over cerebral cortex of anesthetized rats subjected to stepwise reductions in arterial oxygen saturation to 50-70%. Hypoxic reactivity was calculated as the slope of the change in laser-Doppler flow vs. the reciprocal of arterial oxygen content. Hypoxic reactivity significantly decreased from 9.2 ± 1.9 (±95% confidence interval) in controls with vehicle treatment to 2.6 ± 1.4 with the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid, to 3.0 ± 1.5 with the EET synthesis inhibitor MS-PPOH, to 1.9 ± 2.3 with the combined mGluR subtype 1 and 5 antagonists 2-methyl-6-(phenylethynyl)pyridine and LY367385, to 5.6 ± 1.2 with the KATP channel inhibitor glibenclamide, and to 5.8 ± 2.3 with the A2A receptor antagonist SCH58261. However, reactivity was not significantly altered by the A2B receptor antagonist MRS1754 (6.7 ± 1.8; P = 0.28 Dunnett's test) or by the 20-hydroxyeicosatetraenoic acid synthesis inhibitor HET0016 (7.5 ± 2.3; P = 0.6). These data indicate that, in addition to the known contributions of A2A receptors and KATP channels to the increase in cerebral blood flow during hypoxia, EETs and mGluRs make a major contribution, possibly by mGluR stimulation and hypoxia-induced release of EETs. In contrast, A2B receptors do not make a major contribution, and 20-hydroxyeicosatetraenoic acid does not significantly limit hypoxic vasodilation. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cerebrovascular Circulation; Eicosanoic Acids; Eicosanoids; Hydroxyeicosatetraenoic Acids; Hypoxia; Male; Rats; Rats, Wistar | 2015 |
Role of PI3Kα and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection.
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid that have known cardioprotective properties. While the mechanism(s) remains unknown, evidence suggests that phosphoinositide 3-kinase (PI3K) and sarcolemmal ATP-sensitive potassium channels (pmK(ATP)) are important. However the role of specific PI3K isoforms and corresponding intracellular mechanisms remains unknown.. To study this, mice hearts were perfused in Langendorff mode for 40 min of baseline and subjected to 20 or 30 min of global no-flow ischemia followed by 40 min of reperfusion. C57BL6 mice perfused with 11,12-EET (1 μM) had improved postischemic recovery, whereas co-perfusion with PI3Kα inhibitor, PI-103 (0.1 μM), abolished the EET-mediated effect. In contrast, blocking of PI3Kβ or PI3Kγ isoforms failed to inhibit EET-mediated cardioprotection. In addition to the improved post-ischemic recovery, increased levels of p-Akt, decreased calcineurin activity and decreased translocation of proapoptotic protein BAD to mitochondria were noted in EET-treated hearts. Perfusion of 11,12-EET to Kir6.2 deficient mice (pmK(ATP)) failed to improve postischemic recovery, decrease calcineurin activity and translocation of proapoptotic protein BAD, however increased levels of p-Akt were still observed. Patch-clamp experiments demonstrated that 11,12-EET could not activate pmK(ATP) currents in myocytes pre-treated with PI-103. Mechanistic studies in H9c2 cells demonstrate that 11,12-EET limits anoxia-reoxygenation triggered Ca(2+) accumulation and maintains mitochondrial ΔΨm compared to controls. Both PI-103 and glibenclamide (10 μM, pmK(ATP) inhibitor) abolished EET cytoprotection.. Together our data suggest that EET-mediated cardioprotection involves activation of PI3Kα, upstream of pmK(ATP), which prevents Ca(2+) overload and maintains mitochondrial function. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Calcium; Cardiotonic Agents; Cell Line; Class Ia Phosphatidylinositol 3-Kinase; Heart; Hypoxia; Isoenzymes; KATP Channels; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Reperfusion Injury; Myocardium; Sarcolemma | 2012 |
Upregulation of cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid inhibits apoptosis in neonatal rat cardiomyocytes by a caspase-dependent pathway.
Short, nonlethal ischemic episodes administered to hearts directly after ischemic events (ischemic postconditioning, IPost) have an advantage over ischemic preconditioning (IPC). The endogenous cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid (CYP2J3/11,12-EET) is upregulated by IPost, but not IPC, in the rat heart. The CYP epoxygenase inhibitor N-methylsulphonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduces the cardioprotective effects of IPost, but not IPC. We proposed that upregulation of CYP2J3/11,12-EET during IPost induces cardioprotection by inhibiting cardiomyocyte apoptosis and that multiple apoptotic signals, including changes in mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening, mitochondrial cytochrome c leakage, caspase-3 levels, and levels of protective kinases such as Bcl-2 and Bax, are involved in the process. Neonatal rat cardiomyocytes underwent 3-h hypoxia followed by 2-, 5-, or 6-h reoxygenation (H/R) or three cycles of 5-min reoxygenation followed by 5-min hypoxia before 90-min reoxygenation (HPost); or were transfected with pcDNA3.1-CYP2J3 for 48 h before H/R; or were treated with MS-PPOH for 10 min before HPost. For HPost alone, pcDNA3.1-CYP2J3 transfection attenuated cardiomyocyte apoptosis to 68.4% (p<0.05) of that with H/R. pcDNA3.1-CYP2J3 transfection significantly decreased MMP and inhibited mPTP opening induced by H/R, reduced mitochondrial cytochrome c leakage, cleaved caspase-3 protein expression, and increased the ratio of Bcl-2 to Bax expression. MS-PPOH abolished this effect. Therefore, upregulation of CYP2J3/11,12-EET during HPost is involved in cardioprotection by inhibiting apoptosis via a caspase-dependent pathway, and the apoptosis-suppressive effect may have important clinical implications during HPost. Topics: 8,11,14-Eicosatrienoic Acid; Amides; Animals; Animals, Newborn; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cell Survival; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Cytochromes c; Hypoxia; Membrane Potential, Mitochondrial; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocytes, Cardiac; Oxygen; Rats; Rats, Wistar; Up-Regulation | 2012 |
11,12-EET stimulates the association of BK channel α and β(1) subunits in mitochondria to induce pulmonary vasoconstriction.
In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca(2+)-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ(1) subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ(1)(-/-) mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ(1)(-/-) cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β(1) subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β(1) subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arterial Pressure; Epoxide Hydrolases; Gene Deletion; HEK293 Cells; Humans; Hypoxia; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits; Large-Conductance Calcium-Activated Potassium Channel beta Subunits; Lung; Membrane Potential, Mitochondrial; Membrane Potentials; Mice; Mice, Inbred C57BL; Mitochondria; Pulmonary Artery; Vasoconstriction | 2012 |
Chronic hypoxia enhances 15-lipoxygenase-mediated vasorelaxation in rabbit arteries.
15-Lipoxygenase (15-LO-1) metabolizes arachidonic acid (AA) to 11,12,15-trihydroxyeicosatrienoic acids (THETAs) and 15-hydroxy-11,12-epoxyeicosatrienoic acids (HEETA) that dilate rabbit arteries. Increased endothelial 15-LO-1 expression enhances arterial relaxations to agonists. We tested the effect of hypoxia on 15-LO-1 expression, THETA and HEETA synthesis, and relaxations in rabbit arteries. The incubation of rabbit aortic endothelial cells and isolated aortas in 0.7% O(2) increased 15-LO-1 expression. Rabbits were housed in a hypoxic atmosphere of 12% O(2) for 5 days. 15-LO-1 expression increased in the endothelium of the arteries of rabbits in 12% O(2) compared with room air. THETA and HEETA synthesis was also enhanced in aortas and mesenteric arteries. AA hyperpolarized the smooth muscle cells in indomethacin- and phenylephrine-treated mesenteric arteries of hypoxic rabbits from -29.4 +/- 1 to -50.1 +/- 3 mV. The hyperpolarization to AA was less in arteries of normoxic rabbits (from -26.0 +/- 2 to -37 +/- 2 mV). This AA-induced hyperpolarization was inhibited by the 15-LO inhibitor BW-755C. Nitric oxide and prostaglandin-independent maximum relaxations to acetylcholine (79.7 +/- 2%) and AA (38.3 +/- 4%) were enhanced in mesenteric arteries from hypoxic rabbits compared with the normoxic rabbits (49.7 +/- 6% and 19.9 +/- 2%, respectively). These relaxations were inhibited by BW-755C and nordihydroguaiaretic acid. Therefore, hypoxia increased the relaxations to agonists in the rabbit mesenteric arteries by enhancing endothelial 15-LO-1 expression and synthesis of the hyperpolarizing factors THETA and HEETA. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonate 15-Lipoxygenase; Arachidonic Acid; Arteries; Biological Factors; Cyclooxygenase Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Hypoxia; Lipoxygenase Inhibitors; Male; Membrane Potentials; Muscle, Smooth, Vascular; Nitric Oxide; Rabbits; RNA, Messenger; Time Factors; Tunica Intima; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2009 |
Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response.
Recent findings have indicated a role for cytochrome P-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) in acute hypoxic pulmonary vasoconstriction (HPV). Given that the intracellular concentration of EETs is determined by the soluble epoxide hydrolase (sEH), we assessed the influence of the sEH and 11,12-EET on pulmonary artery pressure and HPV in the isolated mouse lung. In lungs from wild-type mice, HPV was significantly increased by sEH inhibition, an effect abolished by pretreatment with CYP epoxygenase inhibitors and the EET antagonist 14,15-EEZE. HPV and EET production were greater in lungs from sEH(-/-) mice than from wild-type mice and sEH inhibition had no further effect on HPV, while MSPPOH and 14,15-EEZE decreased the response. 11,12-EET increased pulmonary artery pressure in a concentration-dependent manner and enhanced HPV via a Rho-dependent mechanism. Both 11,12-EET and hypoxia elicited the membrane translocation of a transient receptor potential (TRP) C6-V5 fusion protein, the latter effect was sensitive to 14,15-EEZE. Moreover, while acute hypoxia and 11,12-EET increased pulmonary pressure in lungs from TRPC6(+/-) mice, lungs from TRPC6(-/-) mice did not respond to either stimuli. These data demonstrate that CYP-derived EETs are involved in HPV and that EET-induced pulmonary contraction under normoxic and hypoxic conditions involves a TRPC6-dependent pathway. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Pressure; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Eicosanoids; Epoxide Hydrolases; Hypoxia; In Vitro Techniques; Mice; Pulmonary Artery; Pulmonary Circulation; rho-Associated Kinases; TRPC Cation Channels; TRPC6 Cation Channel; Vasoconstriction; Vasoconstrictor Agents | 2008 |
Cytochrome p-450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia.
The systemic vasculature exhibits attenuated vasoconstriction following chronic hypoxia (CH) that is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization. We hypothesized that increased production of arachidonic acid metabolites such as the cyclooxygenase product prostacyclin or cytochrome p-450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) contributes to VSM cell hyperpolarization following CH. VSM cell resting membrane potential (Em) was measured in superior mesenteric artery strips isolated from rats with control barometric pressure (Pb, congruent with 630 Torr) and CH (Pb, 380 Torr for 48 h). VSM cell Em was normalized between groups following administration of the CYP inhibitors 17-octadecynoic acid and SKF-525A. VSM cell hyperpolarization after CH was not altered by cyclooxygenase inhibition, whereas the selective CYP2C9 inhibitor sulfaphenazole normalized VSM cell Em between groups. Iberiotoxin also normalized VSM cell Em, which suggests that large-conductance, Ca2+-activated K+ (BKCa) channel activity is increased after CH. Sulfaphenazole administration restored phenylephrine-induced and myogenic vasoconstriction and Ca2+ responses of mesenteric resistance arteries isolated from CH rats to control levels. Western blot experiments demonstrated that CYP2C9 protein levels were greater in mesenteric arteries from CH rats. In addition, 11,12-EET levels were elevated in endothelial cells from CH rats compared with controls. We conclude that enhanced CYP2C9 expression and 11,12-EET production following CH contributes to BKCa channel-dependent VSM cell hyperpolarization and attenuated vasoreactivity. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Aryl Hydrocarbon Hydroxylases; Blotting, Western; Calcium Channel Blockers; Cell Membrane; Chronic Disease; Cyclooxygenase Inhibitors; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Fatty Acids, Unsaturated; Hypoxia; In Vitro Techniques; Male; Membrane Potentials; Mesenteric Arteries; Muscle, Smooth, Vascular; Oxygenases; Potassium Channels, Calcium-Activated; Proadifen; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; Vasoconstriction | 2003 |
The effect of hypoxia on endogenous corneal epithelial eicosanoids.
Injury to the corneal epithelium increases arachidonic acid (AA) metabolism through the cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 pathways. The authors used the rabbit corneal organ culture model to demonstrate the effect of hypoxia on the endogenous formation of 12-hydroxy-5,8,11,14-eicosatetraenoic acid (12-HETE), 12-hydroxy-5,8,14-eicosatrienoic acid (12-HETrE), and prostaglandin (PG) E2 by the intact cornea in the absence of exogenously added cofactors or substrate.. Rabbit corneas were isolated and cultured for 24 hours in normoxia or hypoxia. After culture, PGE2 in media was quantitated by enzyme immunoassay. 12-HETE and 12-HETrE were extracted from culture media and corneal epithelium and quantitated by negative chemical ionization-gas chromatography-mass spectrometry. COX-1 and -2 protein expression in corneal epithelium was determined by Western blot. Acute (2 hours) COX activity in normoxia and hypoxia was determined as the conversion rate of [14C]AA to [14C]PGE2, quantitated through reverse-phase-high-performance liquid chromatography and radiodetection.. In the media of cultured rabbit corneas, both 12-HETE and 12-HETrE were detected, with 12-HETrE levels being four times higher. Hypoxia did not significantly increase extracellular 12-HETE or 12-HETrE; however, it caused more than 90% inhibition of PGE2 synthesis. Intracellular 12-HETE and 12-HETrE were undetectable in normal corneas but increased to 7.7+/-1.3 and 2.2+/-0.4 ng/mg protein, respectively, after 24 hours in culture. Culture in hypoxia further increased intracellular 12-HETE threefold but had no additional effect on 12-HETrE.. Hypoxia creates an environment in which epithelial COX activity is severely suppressed, whereas cytochrome P450-AA and/or 12-LOX metabolizing activity is maintained or enhanced. Additionally, the findings suggest that 12-HETE produced by the corneal epithelium acts intracellularly to promote corneal edema, whereas 12-HETrE acts in a paracrine manner to initiate an inflammatory cascade that can elicit neutrophil chemotaxis and neovascularization of the cornea. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Blotting, Western; Chromatography, High Pressure Liquid; Culture Media; Cyclooxygenase 1; Cyclooxygenase 2; Dinoprostone; Epithelium, Corneal; Gas Chromatography-Mass Spectrometry; Hypoxia; Immunoenzyme Techniques; Isoenzymes; Organ Culture Techniques; Prostaglandin-Endoperoxide Synthases; Rabbits | 2000 |
Inhibition of cytochrome P-450 attenuates hypoxemia of acute lung injury in dogs.
The intravenous administration of ethchlorvynol (ECV), in dogs, resulted in an acute lung injury (ALI) characterized by a 200 +/- 80% increase in venous admixture and a 142 +/- 30% increase in extravascular lung water (EVLW). Pretreatment with the cytochrome P-450 inhibitor 8-methoxypsoralen prevented the ECV-induced increase in venous admixture but not the increased EVLW. These findings parallel those reported for cyclooxygenase inhibition in ECV-induced ALI and suggest that an arachidonic acid (AA) metabolite of pulmonary cytochrome P-450 activity may mediate the increase in venous admixture of ALI. We demonstrate that canine pulmonary microsomes metabolize [1-(14)C]AA to a variety of products, including the cytochrome P-450 metabolites 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid (EET). In prostaglandin F2 alpha-contracted, isolated pulmonary venous rings, 5,6-EET induced relaxation in a concentration-dependent manner. This action of 5,6-EET was prevented by indomethacin (10(-5) M). These results suggest that may serve as the cyclooxygenase-dependent endogenous pulmonary vasodilator responsible for the increase in venous admixture of ECV-induced ALI. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cytochrome P-450 Enzyme Inhibitors; Dinoprost; Dogs; Ethchlorvynol; Hypoxia; Lung; Lung Injury; Male; Methoxsalen; Microsomes; Pharmaceutical Vehicles; Vasoconstriction | 1996 |