8-11-14-eicosatrienoic-acid has been researched along with Hypertension* in 43 studies
5 review(s) available for 8-11-14-eicosatrienoic-acid and Hypertension
Article | Year |
---|---|
Orally Active Epoxyeicosatrienoic Acid Analogs.
Biologically active epoxyeicosatrienoic acid (EET) regioisomers are synthesized from arachidonic acid by cytochrome P450 epoxygenases of endothelial, myocardial, and renal tubular cells. EETs relax vascular smooth muscle and decrease inflammatory cell adhesion and cytokine release. Renal EETs promote sodium excretion and vasodilation to decrease hypertension. Cardiac EETs reduce infarct size after ischemia-reperfusion injury and decrease fibrosis and inflammation in heart failure. In diabetes, EETs improve insulin sensitivity, increase glucose tolerance, and reduce the renal injury. These actions of EETs emphasize their therapeutic potential. To minimize metabolic inactivation, 14,15-EET agonist analogs with stable epoxide bioisosteres and carboxyl surrogates were developed. In preclinical rat models, a subset of agonist analogs, termed EET-A, EET-B, and EET-C22, are orally active with good pharmacokinetic properties. These orally active EET agonists lower blood pressure and reduce cardiac and renal injury in spontaneous and angiotensin hypertension. Other beneficial cardiovascular actions include improved endothelial function and cardiac antiremodeling actions. In rats, EET analogs effectively combat acute and chronic kidney disease including drug- and radiation-induced kidney damage, hypertension and cardiorenal syndrome kidney damage, and metabolic syndrome and diabetes nephropathy. The compelling preclinical efficacy supports the prospect of advancing EET analogs to human clinical trials for kidney and cardiovascular diseases. Topics: 8,11,14-Eicosatrienoic Acid; Administration, Oral; Animals; Blood Pressure; Cardiovascular Diseases; Fatty Acids, Monounsaturated; Humans; Hypertension; Kidney Diseases; Muscle, Smooth, Vascular; Structure-Activity Relationship; Vasodilation | 2017 |
Epoxyeicosatrienoic acids, hypertension, and kidney injury.
Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antihypertensive Agents; Disease Models, Animal; Disease Progression; Endothelium, Vascular; Fatty Acids; Humans; Hypertension; Kidney Diseases; Mice; Rats | 2015 |
Endothelium-derived epoxyeicosatrienoic acids and vascular function.
Epoxyeicosatrienoic acids (EETs) are epoxides of arachidonic acid generated by cytochrome P450 (CYP) epoxygenases. The activation of CYP epoxygenases in endothelial cells is an important step in the NO and prostacyclin-independent vasodilatation of several vascular beds, and EETs have been identified as an endothelium-derived hyperpolarizing factor. However, EETs also exert membrane potential-independent effects and modulate several signaling cascades that affect endothelial cell proliferation and angiogenesis. This review summarizes the role of CYP-derived EETs in endothelium-derived hyperpolarizing factor-mediated responses and highlights the evidence indicating that EETs are important second messengers involved in endothelial cell signaling pathways related to angiogenesis. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Biological Factors; Blood Vessels; Endothelium, Vascular; Humans; Hypertension; Vasomotor System | 2006 |
A critical review of the role of endothelial factors in the pathogenesis of hypertension.
The endothelium produces a variety of substances that play important roles in regulation of the circulation and vascular wall homeostasis. The control of blood vessel wall homeostasis is achieved via production of vasorelaxants and vasoconstrictors. Among the vasorelaxants are nitric oxide (NO), prostacyclin, various endothelium-derived hyperpolarizing factors (EDHFs, such as cytochrome P-450 monooxygenase metabolites of arachidonic acid like epoxyeicosatrienoic acids, and endocannabinoids), and C-type natriuretic peptide. Among the vasoconstrictors we find endothelin-1 (ET-1) and endothelium-derived contracting factors (EDCF) that are cyclooxygenase products such as endoperoxides and thromboxanes. The endothelium, via these and other agents, also exerts a critical influence on the blood stream, particularly formed elements such as leucocytes and platelets, and on substances involved in blood coagulation. All these effects contribute to modulating the growth of the vascular wall in hypertension, and participate in the development of atherothrombotic complications associated with hypertension. Inhibition of NO production may induce elevation of blood pressure in experimental animals. However, even today, we do not have incontrovertible evidence of participation of NO, EDHFs or EDCFs, or other endothelial products, in the pathogenesis of hypertension, although there is evidence of abnormal endothelium-dependent relaxation in hypertension in many but not all hypertensives. It is unclear, however, to what extent this may precede hypertension or be a consequence of elevated blood pressure, possibly contributing to its complications. Also, it is often difficult to dissociate abnormal endothelium-dependent relaxation from confounding factors such as the presence of associated conditions like dyslipidaemia, diabetes, smoking, obesity, hyperhomocysteinaemia, and others, that are accompanied themselves by abnormal endothelium-dependent relaxation. There is some evidence for a role of ET-1 in blood pressure elevation in some experimental forms of hypertension, particularly severe, sodium-sensitive hypertension, in which it may play a role in accentuating rather than initiating blood pressure elevation. Endothelin-1 may play a similar role in human hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Cannabinoid Receptor Modulators; Cannabinoids; Endothelin-1; Endothelins; Endothelium, Vascular; Epoprostenol; Humans; Hypertension; Natriuretic Peptide, C-Type; Nitric Oxide; Oxidative Stress; Oxygen; Peroxides; Thromboxanes; Vasodilator Agents | 2001 |
Novel renal arachidonate metabolites.
Cells of the thick ascending limb of the loop of Henle (TALH) metabolize arachidonic acid (AA) via the cytochrome P450 monooxygenase system to biologically active products that are resolved into two peaks, P1 and P2, on reverse-phase HPLC. Each peak contains materials that have characteristic biological activity. P1 contains a material that relaxes blood vessels and is structurally similar to a vasodilator, the 5,6 epoxyeicosatrienoic acid (EET). P2 contains a material that inhibits cardiac Na+-K+-ATPase, the major component of which has been identified as the 11,12 dihydroxyeicosatrienoic acid. In mTALH cells obtained from rabbits made hypertensive by aortic coarctation, there was a selective increase in P1 and P2 formation compared to other renomedullary cells. We have identified AA metabolites in bovine corneal epithelium with biological properties and chemical features similar to those of mTALH cells. 12(R)hydroxyeicosatetraenoic acid (12(R) HETE) a possible derivative of the 11,12-EET, is produced by the cornea and also has been shown to inhibit Na+-K+-ATPase activity. Renal microsomes obtained from spontaneously hypertensive rats (SHRs) also metabolize AA via a cytochrome P450 monooxygenase pathway to three principal biologically active metabolites that are formed in increased amounts during the developmental phase of hypertension.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Blood Pressure; Chemical Phenomena; Chemistry; Cytochrome P-450 Enzyme System; Hypertension; Kidney; Kidney Tubules; Loop of Henle; Oxygenases; Sodium-Potassium-Exchanging ATPase | 1988 |
38 other study(ies) available for 8-11-14-eicosatrienoic-acid and Hypertension
Article | Year |
---|---|
Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture.
Epoxyeicosatrienoic acids (EETs) are epoxy fatty acids that have biological actions that are essential for maintaining water and electrolyte homeostasis. An inability to increase EETs in response to a high-salt diet results in salt-sensitive hypertension. Vasodilation, inhibition of epithelial sodium channel, and inhibition of inflammation are the major EET actions that are beneficial to the heart, resistance arteries, and kidneys. Genetic and pharmacological means to elevate EETs demonstrated antihypertensive, anti-inflammatory, and organ protective actions. Therapeutic approaches to increase EETs were then developed for cardiovascular diseases. sEH (soluble epoxide hydrolase) inhibitors were developed and progressed to clinical trials for hypertension, diabetes mellitus, and other diseases. EET analogs were another therapeutic approach taken and these drugs are entering the early phases of clinical development. Even with the promise for these therapeutic approaches, there are still several challenges, unexplored areas, and opportunities for epoxy fatty acids. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Cardiovascular Diseases; Cytochrome P-450 Enzyme System; Disease Models, Animal; Epoxide Hydrolases; Forecasting; Humans; Hypertension; Kidney; Kidney Diseases; Mice; Natriuresis; Potassium; Rats; Rats, Inbred Dahl; Sodium Chloride; Sodium Chloride, Dietary; Vasodilation; Water-Electrolyte Balance; Water-Electrolyte Imbalance | 2020 |
EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter.
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice.. EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Epithelial Sodium Channels; GTP Phosphohydrolases; Heme Oxygenase-1; Hypertension; Kidney; Kidney Diseases; Membrane Proteins; Mice; Obesity; Signal Transduction | 2018 |
The role of soluble epoxide hydrolase in preeclampsia.
Preeclampsia is a serious complication of pregnancy characterized by the development of vasospasm, hypertension and often associated with proteinuria after the 20th week of gestation. Because termination of pregnancy results in the most efficacious resolution of preeclampsia, it is a leading cause of premature delivery worldwide. In pregnancy, 14,15-epoxyeicosatrienoic acids (EETs) have been shown to facilitate uterine blood flow during preeclampsia, in which the classic vasodilator agents such as nitric oxide and prostacyclin are reduced. EETs are converted to dihydroxyeicosatrienoic acids (DHETs) by the activity of soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH activity is increased in preeclampsia by measuring urinary 14,15-DHET in healthy and preeclamptic pregnant women. Urine samples were collected and incubated with or without β-glucuronidase to enable the measurement of both the glucuronidated and free forms of 14,15-DHET, which were quantified using a 14,15-DHET ELISA. Levels of total (free+glucuronidated) 14,15-DHET, which is a measurement of EET-dependent sEH activity, were higher in urine samples obtained from preeclamptic women compared to healthy pregnant women. Considering the fact that free+glucuronidated 14,15-DHET levels are increased in urine of preeclamptic women, we hypothesize that sEH expression or activity is augmented in these patients, reducing EET and increasing blood pressure. Moreover we suggest that novel anti-hypertensive agents that target sEH might be developed as therapeutics to control high blood pressure in women with preeclampsia. Topics: 8,11,14-Eicosatrienoic Acid; Adult; Antihypertensive Agents; Blood Pressure; Epoprostenol; Epoxide Hydrolases; Female; Glucuronidase; Humans; Hypertension; Maternal Age; Nitric Oxide; Pre-Eclampsia; Pregnancy; Pregnancy Complications; Vasoconstriction; Vasodilator Agents; Young Adult | 2017 |
Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimenta
Pathophysiological mechanisms underlying the development of renal dysfunction and progression of congestive heart failure (CHF) remain poorly understood. Recent studies have revealed striking differences in the role of epoxyeicosatrienoic acids (EETs), active products of cytochrome P-450-dependent epoxygenase pathway of arachidonic acid, in the progression of aorto-caval fistula (ACF)-induced CHF between hypertensive Ren-2 renin transgenic rats (TGR) and transgene-negative normotensive Hannover Sprague-Dawley (HanSD) controls. Both ACF TGR and ACF HanSD strains exhibited marked intrarenal EETs deficiency and impairment of renal function, and in both strains chronic pharmacologic inhibition of soluble epoxide hydrolase (sEH) (which normally degrades EETs) normalized EETs levels. However, the treatment improved the survival rate and attenuated renal function impairment in ACF TGR only. Here we aimed to establish if the reported improved renal function and attenuation of progression of CHF in ACF TGR observed after she blockade depends on increased vasodilatory responsiveness of renal resistance arteries to EETs. Therefore, we examined the responses of interlobar arteries from kidneys of ACF TGR and ACF HanSD rats to EET-A, a new stable 14,15-EET analog. We found that the arteries from ACF HanSD kidneys rats exhibited greater vasodilator responses when compared to the ACF TGR arteries. Hence, reduced renal vasodilatory responsiveness cannot be responsible for the lack of beneficial effects of chronic sEH inhibition on the development of renal dysfunction and progression of CHF in ACF HanSD rats. Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Disease Progression; Dose-Response Relationship, Drug; Heart Failure; Hypertension; Kidney; Male; Norepinephrine; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Renal Circulation; Renin; Vasodilation | 2017 |
Association of CYP2C19 variants and epoxyeicosatrienoic acids on patients with microvascular angina.
Categorization as a cytochrome P450 (CYP) 2C19 poor metabolizer (PM) is reported to be an independent risk factor for cardiovascular disease. Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by CYP2C19 epoxygenases and anti-inflammatory properties, especially in microvascular tissues. We examined the association of CYP2C19 polymorphisms and EETs on microvascular angina (MVA) caused by coronary microvascular dysfunction. We examined CYP2C19 genotypes in patients with MVA (n = 71) and healthy subjects as control (n = 71). MVA was defined as the absence of coronary artery stenosis and epicardial spasms and the presence of inversion of lactic acid levels between intracoronary and coronary sinuses in acetylcholine-provocation test or the adenosine-triphosphate-induced coronary flow reserve ratio was below 2.5. CYP2C19 PM have two loss-of-functon alleles (*2, *3). We measured serum dihydroxyeicosatrienoic acid (DHET) as representative EET metabolite. MVA group showed significantly higher CYP2C19 PM incidence (35% vs. 16%; P = 0.007) and high sense C-reactive protein (hs-CRP) levels (0.127 ± 0.142 vs. 0.086 ± 0.097 mg/dl; P = 0.043) than those of controls. Moreover, in MVA group, hs-CRP levels in CYP2C19 PM were significantly higher than that of non-PM (0.180 ± 0.107 vs. 0.106 ± 0.149 mg/dl, P = 0.045). Multivariate analysis indicated that smoking, hypertension, high hs-CRP, and CYP2C19 PM are predictive factors for MVA. In MVA group, DHET levels for CYP2C19 PM were significantly lower than that of non-PM [10.9 ± 1.64 vs. 14.2 ± 5.39 ng/ml, P = 0.019 (11,12-DHET); 15.2 ± 4.39 vs. 17.9 ± 4.73 ng/ml, P = 0.025 (14,15-DHET)]. CYP2C19 variants are associated with MVA. The decline of EET-based defensive mechanisms owing to CYP2C19 variants may affect coronary microvascular dysfunction. Topics: 8,11,14-Eicosatrienoic Acid; Aged; Arachidonic Acid; C-Reactive Protein; Case-Control Studies; Cytochrome P-450 CYP2C19; Female; Genetic Predisposition to Disease; Humans; Hydroxyeicosatetraenoic Acids; Hypertension; Logistic Models; Male; Microvascular Angina; Middle Aged; Multivariate Analysis; Polymorphism, Genetic; Risk Factors; Smoking | 2016 |
Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition.
Epoxyeicosatrienoic acids (EETs) contribute to haemodynamics, electrolyte homoeostasis and blood pressure regulation, leading to the concept that EETs can be therapeutically targeted for hypertension. In the present study, multiple structural EET analogues were synthesized based on the EET pharmacophore and vasodilator structure-activity studies. Four EET analogues with 91-119% vasodilatory activity in the isolated bovine coronary artery (EC50: 0.18-1.6 μM) were identified and studied for blood-pressure-lowering in hypertension. Two EET analogues in which the COOH group at carbon 1 of the EET pharmacophore was replaced with either an aspartic acid (EET-A) or a heterocyclic surrogate (EET-X) were administered for 14 days [10 mg/kg per day intraperitoneally (i.p.)]. Both EET-A and EET-X lowered blood pressure in spontaneously hypertensive rats (SHRs) and in angiotensin II (AngII) hypertension. On day 14, the mean arterial pressures in EET analogue-treated AngII-hypertensive and SHRs were 30-50 mmHg (EET-A) and 15-20 mmHg (EET-X) lower than those in vehicle-treated controls. These EET analogues (10 mg/kg per day) were further tested in AngII hypertension by administering orally in drinking water for 14 days and EET-A lowered blood pressure. Additional experiments demonstrated that EET-A inhibits epithelial sodium channel (ENaC) activity in cultured cortical collecting duct cells and reduced renal expression of ENaC subunits in AngII hypertension. In conclusion, we have characterized EET-A as an orally active antihypertensive EET analogue that protects vascular endothelial function and has ENaC inhibitory activity in AngII hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antihypertensive Agents; Blood Pressure; Hemodynamics; Hypertension; Male; Mice; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Sodium Channel Blockers; Vasodilation | 2014 |
Vasodilatory effect of 14,15-epoxyeicosatrienoic acid on mesenteric arteries in hypertensive and aged rats.
The objective of this study was to investigate the 14,15-epoxyeicosatrienoic acid (14,15-EET)-induced vasodilatations as well as the underlying signaling pathways in rat mesenteric arteries from young, adult and old normotensive (WKY) and hypertensive rats. Protein expressions for prostaglandin EP(1-4) receptors, large conductance Ca(2+)-activated K(+) (BK(Ca)) channels, and adenylate cyclase (AC) were determined together with 14,15-EET-induced vasodilatations in primary- versus secondary-branches of the mesenteric artery. Responses to 14,15-EET were greater in the smaller secondary- versus primary-branches (and also more sensitive with lower EC50) and were reduced in vessels from old (80 weeks) rats as well as from vessels from the spontaneous hypertensive rats (SHR). Regardless of age or hypertension responses to 14,15-EET were inhibited by the EP2 antagonist AH6809, BK(Ca) channel inhibitor iberiotoxin, or 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) pathway antagonists. These data indicate 14,15-EET-induced vasodilatation is mediated via the activation of EP2 receptors and opening of BK(Ca) channels. The expressions of the EP2 receptor and AC were markedly reduced in vessels from SHR as well as old rats, whereas BK(Ca) expression was reduced in old WKY and SHR, but not adult SHR. Furthermore, expression of the p53 protein, an indicator of cell senescence and apoptosis, was elevated in adult and old SHR as well as in old WKY. In summary, attenuated 14,15-EET-induced vasodilatation in mesenteric arteries from old normotensive WKY as well as adult and old SHR is associated with reduced expression of EP2 receptors and AC. Topics: 8,11,14-Eicosatrienoic Acid; Aging; Animals; Cyclic AMP-Dependent Protein Kinases; Endothelium, Vascular; Enzyme Activation; Hypertension; Male; Mesenteric Arteries; Potassium Channels, Calcium-Activated; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Prostaglandin E, EP2 Subtype; Vasodilator Agents | 2014 |
Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation.
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antihypertensive Agents; Cetuximab; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 2; Epidermal Growth Factor; Epithelial Sodium Channels; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Humans; Hypertension; Kidney; Male; Mice; Models, Biological; Phosphorylation | 2013 |
Disturbed ratio of renal 20-HETE/EETs is involved in androgen-induced hypertension in cytochrome P450 4F2 transgenic mice.
We have previously established a cytochrome P450 4F2 (CYP4F2) transgenic mouse model. The present study elucidated the molecular foundation of hypertension by androgen-induction in this model. The renal expression of CYP4F2 in transgenic mice was highly expressed and strongly induced with 5α-dihydrotestosterone (DHT) treatment determined by Western blot. DHT also increased the renal arachidonic acid ω-hydroxylation and urinary 20-hydroxyeicosatetraenoic acid (20-HETE) excretion (P<0.01), and furthermore elevated the systolic blood pressure by 10 and 22 mm Hg (P<0.05) in female and castrated male transgenic mice, respectively. HET0016 completely eliminated the androgen-induced effects (P<0.01). Endogenous Cyp4a ω-hydroxylases, evaluated by real-time quantitative PCR, were significantly suppressed in transgenic mice (P<0.05). Importantly, transgenic mice with increased 20-HETE showed decreased epoxyeicosatrienoic acids (EETs) and increased dihydroxyeicosatetraenoic acids determined by liquid chromatography-tandem mass spectrometry, contributing to significantly raised ratio of 20-HETE/EETs in the urine and kidney homogenate (P<0.01). These data demonstrate that the androgen aggravated hypertension possibly through an altered ratio of 20-HETE/EETs in CYP4F2 transgenic mice. Topics: 8,11,14-Eicosatrienoic Acid; Androgens; Animals; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Female; Hydroxyeicosatetraenoic Acids; Hypertension; Kidney; Male; Mice; Mice, Transgenic | 2012 |
Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats.
Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (V(max)) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg(-1)·day(-1) for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED(50) 10(-10) M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED(50) 10(-9) M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Benzoic Acid; Blood Pressure; Disease Models, Animal; Epoxide Hydrolases; Erythrocytes; Hypertension; Male; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 2011 |
Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats.
Recent studies have shown that the renal CYP450 (cytochrome P450) metabolites of AA (arachidonic acid), the vasoconstrictor 20-HETE (20-hydroxyeicosatetraenoic acid) and the vasodilator EETs (epoxyeicosatrienoic acids), play an important role in the pathophysiology of AngII (angiotensin II)-dependent forms of hypertension and the associated target organ damage. The present studies were performed in Ren-2 renin transgenic rats (TGR) to evaluate the effects of chronic selective inhibition of 20-HETE formation or elevation of the level of EETs, alone or in combination, on the course of hypertension and hypertension-associated end-organ damage. Both young (30 days of age) prehypertensive TGR and adult (190 days of age) TGR with established hypertension were examined. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. The rats were treated with N-methylsulfonyl-12,12-dibromododec-11-enamide to inhibit 20-HETE formation and/or with N-cyclohexyl-N-dodecyl urea to inhibit soluble epoxide hydrolase and prevent degradation of EETs. Inhibition in TGR of 20-HETE formation combined with enhanced bioavailability of EETs attenuated the development of hypertension, cardiac hypertrophy, proteinuria, glomerular hypertrophy and sclerosis as well as renal tubulointerstitial injury. This was also associated with attenuation of the responsiveness of the systemic and renal vascular beds to AngII without modifying their responses to noradrenaline (norepinephrine). Our findings suggest that altered production and/or action of 20-HETE and EETs plays a permissive role in the development of hypertension and hypertension-associated end-organ damage in this model of AngII-dependent hypertension. This information provides a basis for a search for new therapeutic approaches for the treatment of hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Amides; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Drug Evaluation, Preclinical; Hydroxyeicosatetraenoic Acids; Hypertension; Male; Multiple Organ Failure; Norepinephrine; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Renal Circulation; Sulfones; Vasoconstrictor Agents | 2010 |
Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice.
Accumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin resistance and diabetes.. This study investigated the effects of CYP2J3 epoxygenase gene therapy on insulin resistance and blood pressure in diabetic db/db mice and in a model of fructose-induced hypertension and insulin resistance in rats.. CYP2J3 gene delivery in vivo increased EET generation, reduced blood pressure, and reversed insulin resistance as determined by plasma glucose levels, homeostasis model assessment insulin resistance index, and glucose tolerance test. Furthermore, CYP2J3 treatment prevented fructose-induced decreases in insulin receptor signaling and phosphorylation of AMP-activated protein kinases (AMPKs) in liver, muscle, heart, kidney, and aorta. Thus, overexpression of CYP2J3 protected against diabetes and insulin resistance in peripheral tissues through activation of insulin receptor and AMPK pathways.. These results highlight the beneficial roles of the CYP epoxygenase-EET system in diabetes and insulin resistance. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Pressure; Cytochrome P-450 Enzyme System; DNA Primers; Endothelin-1; Enzyme-Linked Immunosorbent Assay; Fructose; Gene Expression Regulation; Glucose Tolerance Test; Hypertension; Insulin Resistance; Metabolic Syndrome; Mice; Nitric Oxide Synthase Type III; Rats; Receptor, Endothelin A; RNA, Messenger | 2010 |
Overexpression of cytochrome P450 epoxygenases prevents development of hypertension in spontaneously hypertensive rats by enhancing atrial natriuretic peptide.
Cytochrome P450 (P450)-derived epoxyeicosatrienoic acids (EETs) exert well recognized vasodilatory, diuretic, and tubular fluid-electrolyte transport actions that are predictive of a hypotensive effect. The study sought to determine the improvement of hypertension and cardiac function by overexpressing P450 epoxygenases in vivo. Long-term expression of CYP102 F87V or CYP2J2 in spontaneously hypertensive rats (SHR) was mediated by using a type 8 recombinant adeno-associated virus (rAAV8) vector. Hemodynamics was measured by a Millar Instruments, Inc. (Houston, TX) microtransducer catheter, and atrial natriuretic peptide (ANP) mRNA levels were tested by real-time polymerase chain reaction. Results showed that urinary excretion of 14,15-EET was increased at 2 and 6 months after injection with rAAV-CYP102 F87V and rAAV-CYP2J2 compared with controls (p < 0.05). During the course of the 6-month study, systolic blood pressure significantly decreased in P450 epoxygenase-treated rats, but the CYP2J2-specific inhibitor C26 blocked rAAV-CYP2J2-induced hypotension and the increase in EET production. Cardiac output was improved by P450 epoxygenase expression at 6 months (p < 0.05). Furthermore, cardiac collagen content was reduced in P450 epoxygenase-treated rats. ANP mRNA levels were up-regulated 6- to 14-fold in the myocardium, and ANP expression was significantly increased in both myocardium and plasma in P450 epoxygenase-treated rats. However, epidermal growth factor (EGF) receptor antagonist 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG-1478) significantly attenuated the increase in the EET-induced expression of ANP in vitro. These data indicate that overexpression of P450 epoxygenases attenuates the development of hypertension and improves cardiac function in SHR, and that these effects may be mediated, at least in part, by ANP via activating EGF receptor. Topics: 8,11,14-Eicosatrienoic Acid; Adenoviridae; Animals; Aorta, Thoracic; Atrial Natriuretic Factor; Blood Pressure; Blotting, Western; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Genetic Vectors; Heart Function Tests; Hemodynamics; Hypertension; Immunohistochemistry; In Vitro Techniques; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Myocytes, Cardiac; Rats; Rats, Inbred SHR; Reverse Transcriptase Polymerase Chain Reaction | 2010 |
[The role of modification of fatty acid composition of erythrocyte lipids in pathogenesis of arterial hypertension].
We used liquid chromatography for analysis of fatty acids (FA) in lipids of erythrocytes of patients with hypertensive disease (HD) with normo- (group 1) and hyperlipidemia (group 2). Abnormalities of FA composition of erythrocyte lipids were revealed in both groups. In group 1 we found deficit of polyenic acids of omega-6 family, accumulation of Mead acid - prostanoid precursor with pronounced vasoconstrictor and pro inflammatory properties. In group 2 we noted more profound rearrangement of lipid matrix of erythrocyte membrane manifested as deficiency of omega-3 polyenic acids, accumulation of palmitinic and arachidonic acids. Preponderance of saturated FA in erythrocytes and deficiency of polyenic acids might evidence for pathology of their ligand-receptor transport into the cell. Blockade of active FA transport initiates formation of HD, promotes accumulation of atherogenic fractions of lipoproteins in blood. These results evidence for important pathogenetic role of FA in development of hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Arachidonic Acid; Atherosclerosis; Biological Transport, Active; Carbon-Carbon Double Bond Isomerases; Chromatography, Gas; Erythrocyte Membrane; Female; Humans; Hyperlipidemias; Hypertension; Inflammation Mediators; Lipoproteins; Male; Middle Aged; Palmitic Acid; Vasoconstriction | 2010 |
TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure.
Transient receptor potential vanilloid 4 (TRPV4) channels have been implicated as mediators of calcium influx in both endothelial and vascular smooth muscle cells and are potentially important modulators of vascular tone. However, very little is known about the functional roles of TRPV4 in the resistance vasculature or how these channels influence hemodynamic properties. In the present study, we examined arterial vasomotor activity in vitro and recorded blood pressure dynamics in vivo using TRPV4 knockout (KO) mice. Acetylcholine-induced hyperpolarization and vasodilation were reduced by approximately 75% in mesenteric resistance arteries from TRPV4 KO versus wild-type (WT) mice. Furthermore, 11,12-epoxyeicosatrienoic acid (EET), a putative endothelium-derived hyperpolarizing factor, activated a TRPV4-like cation current and hyperpolarized the membrane of vascular smooth muscle cells, resulting in the dilation of mesenteric arteries from WT mice. In contrast, 11,12-EET had no effect on membrane potential, diameter, or ionic currents in the mesenteric arteries from TRPV4 KO mice. A disruption of the endothelium reduced 11,12-EET-induced hyperpolarization and vasodilatation by approximately 50%. A similar inhibition of these responses was observed following the block of endothelial (small and intermediate conductance) or smooth muscle (large conductance) K(+) channels, suggesting a link between 11,12-EET activity, TRPV4, and K(+) channels in endothelial and smooth muscle cells. Finally, we found that hypertension induced by the inhibition of nitric oxide synthase was greater in TRPV4 KO compared with WT mice. These results support the conclusion that both endothelial and smooth muscle TRPV4 channels are critically involved in the vasodilation of mesenteric arteries in response to endothelial-derived factors and suggest that in vivo this mechanism opposes the effects of hypertensive stimuli. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Pressure; Endothelium, Vascular; Hypertension; Mesenteric Arteries; Mice; Mice, Knockout; Muscle, Smooth, Vascular; Nitric Oxide Synthase; Potassium Channels, Calcium-Activated; TRPV Cation Channels; Vascular Resistance; Vasodilation; Vasodilator Agents | 2009 |
Discovery of 3,3-disubstituted piperidine-derived trisubstituted ureas as highly potent soluble epoxide hydrolase inhibitors.
3,3-Disubstituted piperidine-derived trisubstituted urea entA-2b was discovered as a highly potent and selective soluble epoxide hydrolase (sEH) inhibitor. Despite the good compound oral exposure, excellent sEH inhibition in whole blood, and remarkable selectivity, compound entA-2b failed to lower blood pressure acutely in spontaneously hypertensive rats (SHRs). This observation further challenges the premise that sEH inhibition can provide a viable approach to the treatment of hypertensive patients. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Pressure; Epoxide Hydrolases; Humans; Hypertension; Models, Molecular; Piperidines; Protein Binding; Rats; Rats, Inbred SHR; Structure-Activity Relationship; Urea | 2009 |
Failure to upregulate the adenosine2A receptor-epoxyeicosatrienoic acid pathway contributes to the development of hypertension in Dahl salt-sensitive rats.
Adenosine-activated renovascular dilatation in Sprague-Dawley (SD) rats is mediated by stimulating adenosine(2A) receptors (A(2A)R), which is linked to epoxyeicosatrienoic acid (EET) synthesis. The A(2A)R-EET pathway is upregulated by high salt (HS) intake in normotensive SD rats. Because this pathway is antipressor, we examined the role of the A(2A)R-EET pathway in Dahl salt-sensitive (SS) rats. Male Dahl salt-resistant (SR) and SS rats were fed either HS (8.0% NaCl) or normal salt (NS; 0.4% NaCl) diet for 7 days. On day 8, isolated kidneys were perfused with Krebs-Henseleit buffer containing indomethacin and N(G)-nitro-l-arginine methyl ester and preconstricted with phenylephrine. Bolus injections of the stable adenosine analog 2-chloroadenosine (2-CA; 0.1-20 microg) elicited dose-dependent dilation in both Dahl SR and SS rats. Dahl SR rats fed a HS diet demonstrated a greater renal vasodilator response to 10 microg of 2-CA, as measured by the reduction in renal perfusion pressure, than that of Dahl SR rats fed a NS diet (-104 +/- 6 vs. -77 +/- 7 mmHg, respectively; P < 0.05). In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed NS or HS diet (96 +/- 6 vs. 104 +/- 13 mmHg in NS- and HS-fed rats, respectively). In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A)R and the cytochrome P-450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake, and this inability of Dahl SS rats to upregulate the A(2A)R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 2; Hypertension; Purines; Rats; Rats, Inbred Dahl; Receptor, Adenosine A2A; Sodium Chloride; Steroid 16-alpha-Hydroxylase; Up-Regulation | 2008 |
Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats.
Cytochrome P450-derived epoxyeicosatrienoic acids (EET) are biologically active metabolites of arachidonic acid that have potent effects on renal vascular reactivity and tubular ion transport and have been implicated in the control of blood pressure. EETs are hydrolyzed to their less active diols, dihydroxyeicosatrienoic acids (DHET), by the enzyme soluble epoxide hydrolase (sEH). 1,3-dicyclohexylurea (DCU), a potent sEH inhibitor, lowers systemic blood pressure in spontaneously hypertensive rats when dosed intraperitoneally. However, DCU has poor aqueous solubility, posing a challenge for in vivo oral delivery. To overcome this limitation, we formulated DCU in a nanosuspension using wet milling. Milling reduced particle size, increasing the total surface area by approximately 40-fold. In rats chronically infused with angiotensin II, the DCU nanosuspension administered orally twice daily for 4 days produced plasma exposures an order of magnitude greater than unmilled DCU and lowered blood pressure by nearly 30 mmHg. Consistent with the mechanism of sEH inhibition, DCU increased plasma 14,15-EET and decreased plasma 14,15-DHET levels. These data confirm the antihypertensive effect of sEH inhibition and demonstrate that greatly enhanced exposure of a low-solubility compound is achievable by oral delivery using a nanoparticle drug delivery system. Topics: 8,11,14-Eicosatrienoic Acid; Administration, Oral; Animals; Blood Pressure; Chromatography, Liquid; Disease Models, Animal; Epoxide Hydrolases; Hypertension; Male; Nanoparticles; Particle Size; Rats; Rats, Sprague-Dawley; Solubility; Suspensions; Tandem Mass Spectrometry; Urea | 2008 |
Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease.
The aim of the present cross-sectional study was to investigate whether activation of the renin-angiotensin system in renovascular disease affects the cytochrome P450 omega/omega-1 hydroxylase (20-hydroxyeicosatetraenoic acid [20-HETE]) and epoxygenase (epoxyeicosatrienoic acids [EETs]) pathways of arachidonic acid metabolism in vivo, each of which interacts with angiotensin II. Plasma concentration and urinary excretion of 20-HETE and EETs and their metabolites, dihydroxyeicosatrienoic acids, were measured in urine and plasma by mass spectrometry in 10 subjects with renovascular disease, 10 with essential hypertension, and 10 healthy normotensive subjects (control subjects), pair-matched for gender and age. Vascular and renal function were evaluated in all of the subjects. Plasma 20-HETE was highest in subjects with renovascular disease (median: 1.20 ng/mL; range: 0.42 to 1.92 ng/mL) compared with subjects with essential hypertension (median: 0.90 ng/mL; range: 0.40 to 2.17 ng/mL) and control subjects (median: 0.45 ng/mL; range: 0.14 to 1.70 ng/mL; P<0.05). Plasma 20-HETE significantly correlated with plasma renin activity in renovascular disease (r(s)=0.67; n=10; P<0.05). The urinary excretion of 20-HETE was significantly lower in subjects with renovascular disease (median: 12.9 microg/g of creatinine; range: 4.4 to 24.9 microg/g of creatinine) than in control subjects (median: 31.0 microg/g of creatinine; range: 11.9 to 102.8 microg/g of creatinine; P<0.01) and essential hypertensive subjects (median: 35.9 microg/g of creatinine; range: 14.0 to 72.5 microg/g of creatinine; P<0.05). Total plasma EETs were lowest, as was the ratio of plasma EETs to plasma dihydroxyeicosatrienoic acids, an index of epoxide hydrolase activity, in renovascular disease (ratio: 2.4; range: 1.2 to 6.1) compared with essential hypertension (ratio: 3.4; range: 1.5 to 5.6) and control subjects (ratio: 6.8; range: 1.4 to 18.8; P<0.01). In conclusion, circulating levels of 20-HETE are increased and those of EETs are decreased in renovascular disease, whereas the urinary excretion of 20-HETE is reduced. Altered cytochrome P450 arachidonic acid metabolism may contribute to the vascular and tubular abnormalities of renovascular disease. Topics: 8,11,14-Eicosatrienoic Acid; Adult; Aged; Aged, 80 and over; Arachidonic Acid; Arachidonic Acids; Case-Control Studies; Creatinine; Cross-Sectional Studies; Cytochrome P-450 Enzyme System; Humans; Hydroxyeicosatetraenoic Acids; Hypertension; Hypertension, Renovascular; Male; Middle Aged; Renal Artery Obstruction | 2008 |
Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase.
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N'-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2 wk starting 2 wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparations, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Aorta, Thoracic; Desoxycorticosterone; Electrophysiology; Endothelium, Vascular; Enzyme Inhibitors; Epoxide Hydrolases; Heart Ventricles; Hypertension; Inflammation; Male; Rats; Rats, Wistar; Salts | 2007 |
Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat.
The role of soluble epoxide hydrolase (sEH) in the central control of blood pressure (BP) has not been elucidated in spite of peripheral sEH overexpression being linked to hypertension. Thus, our objective was to investigate the involvement of brain sEH in BP control. sEH expression in the hypothalamus and brain stem, two cardioregulatory brain areas, was increased in the spontaneously hypertensive rat (SHR) compared to the Wistar Kyoto (WKY) rat. Inhibition of the enzyme by intracerebroventricular (icv) delivery of AUDA further increased both BP and heart rate (HR) by 32 +/- 6 mmHg and 54 +/- 10 bpm, respectively, (P<0.05) in the SHR. Analysis of waveform telemetry data revealed a decrease in spontaneous baroreceptor reflex gain following sEH inhibition, indicating the sustained increase in BP may be due to a decrease in baroreceptor reflex function. The hypertensive effect of sEH inhibition is likely a result of an increase in epoxyeicosatrienoic acid (EET)-mediated generation of ROS. This view is supported by the following: 1) Inhibition of EET formation attenuates AUDA-induced increase in BP; 2) delivery of an EET agonist increases BP and HR in the WKY rat, and 3) inhibition of NAD(P)H oxidase by gp91ds-tat prevents AUDA-induced increases in BP and HR. Finally, electrophysiological studies demonstrate that AUDA increased neuronal firing rate exclusively in the SHR, an effect completely abolished by gp91ds-tat. These observations suggest that EETs and sEH inhibition are involved in increasing BP in the SHR. We suggest that an increased expression of sEH is a futile central nervous system response in protection against hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Baroreflex; Blood Pressure; Blotting, Western; Brain; Brain Stem; Cells, Cultured; Epoxide Hydrolases; Heart Rate; Homeostasis; Hypertension; Hypothalamus; Male; Neurons; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Solubility | 2005 |
A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury.
Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-kappa B activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-alpha-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-kappa B activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was the major isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-alpha activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism. Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Arachidonic Acid; Blotting, Western; Chromatography, Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Fenofibrate; Humans; Hypertension; Hypolipidemic Agents; Immunohistochemistry; Kidney; Kidney Diseases; Mass Spectrometry; NF-kappa B; Polymerase Chain Reaction; Rats; Receptors, Cytoplasmic and Nuclear; Renin; Transcription Factors; Vasoconstrictor Agents | 2004 |
5,6-epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR.
We have shown a cytochrome P450-dependent renal vasodilator effect of arachidonic acid in response to inhibition of cyclooxygenase and elevation of perfusion pressure, which was enhanced in the spontaneously hypertensive rat (SHR) and linked to increased production of and/or responsiveness to epoxyeicosatrienoic acids (EETs). In the SHR, vasodilation elicited by low doses of arachidonic acid was attenuated by the nitric oxide synthase inhibitor Nw-nitro-L-arginine (50 micromol/L), whereas the responses to high doses were unaffected. Inhibition of epoxygenases with miconazole (0.3 micromol/L) in the presence of Nw-nitro-L-arginine greatly reduced the renal vasodilator response to all doses of arachidonic acid. Tetraethylammonium (10 mmol/L), a nonselective K+ channel blocker, abolished the nitric oxide-independent renal vasodilator effect of arachidonic acid as well as the vasodilator effect of 5,6-EET, confirming that EET-dependent vasodilation involves activation of K+ channels. Under conditions of elevated perfusion pressure (200 mm Hg) and cyclooxygenase inhibition, 5,6-EET, 8, 9-EET, and 11,12-EET caused renal vasodilatation in both SHR and Wistar-Kyoto rats (WKY), whereas 14,15-EET produced vasoconstriction. 5,6-EET was the most potent renal vasodilator of the EET regioisomers in the SHR by a factor of 4 or more. In the SHR, 5,6-EET- and 11,12-EET-induced renal vasodilatation was >2-fold greater than that registered in WKY. Thus, the augmented vasodilator responses to arachidonic acid in the SHR is through activation of K+ channels, and 5,6-EET is the most likely mediator. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Hypertension; Kidney; Male; Potassium Channel Blockers; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetraethylammonium; Vasodilation; Vasodilator Agents | 2003 |
Epoxyeicosatrienoic acid-mediated renal vasodilation to arachidonic acid is enhanced in SHR.
We tested the hypothesis that cyclooxygenase-independent vasodilation produced by arachidonic acid (AA) is mediated by epoxyeicosatrienoic acids (EETs) and is blunted in the spontaneously hypertensive rat (SHR). At normal perfusion pressure (PP; 70 to 90 mm Hg), AA constricted the renal vasculature in both SHR and normotensive Wistar-Kyoto rats, an effect abolished by cyclooxygenase inhibition, and converted to vasodilation when PP was raised to approximately 200 mm Hg. Unexpectedly, renal vasodilation elicited by AA was greater in the SHR at high PP; for example, 2.5, 5, and 10 microg of AA produced PP declines of 54+/-9, 92+/-10, and 112+/-5 mm Hg, respectively, in SHR compared with 26+/-3, 45+/-5, and 77+/-6 mm Hg in Wistar-Kyoto rats (P:<0.01). However, the renal vasodilator responses to acetylcholine (0.1 microg) and sodium nitroprusside (1 microg) did not differ between strains, indicating that vascular responsiveness to AA was independent of intrinsic changes in vascular smooth muscle. Hyperresponsiveness of the renal vasculature to AA may be unique for the SHR, because it did not occur in Sprague-Dawley rats with angiotensin II-induced hypertension. 5,8,11,14-Eicosatetraynoic acid (ETYA; 4 micromol/L), an inhibitor of all AA pathways, attenuated the vasodilator responses to AA, as did treatment with stannous chloride, which depletes cytochrome P450 enzymes, suggesting that a cytochrome P450 AA metabolite mediated the renal vasodilation. N:-Methylsulfonyl-12,12-dibromododec-11-en-amide (DDMS; 2 micromol/L), a selective omega-hydroxylase inhibitor, did not affect AA-induced vasodilation, whereas selective inhibition of epoxygenases with either miconazole (0.3 micromol/L) or N:-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH; 12 micromol/L) did, indicating that one or more EETs were involved in the renal vasodilator action of AA at high PP. This conclusion was supported by the demonstration that AA greatly enhanced the renal efflux of EETs at high PP but not at basal PP. Topics: 5,8,11,14-Eicosatetraynoic Acid; 8,11,14-Eicosatrienoic Acid; Acetylcholine; Amides; Animals; Arachidonic Acid; Enzyme Inhibitors; Hypertension; Indomethacin; Male; Nitroprusside; Perfusion; Pressure; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Renal Circulation; Sulfones; Tin Compounds; Vasodilation | 2001 |
Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid.
Epoxygenase metabolites produced by the kidney affect renal blood flow and tubular transport function and 11,12-epoxyeicosatrienoic acid (11,12-EET) has been putatively identified as an endothelium-derived hyperpolarizing factor. The current studies were performed to determine the influence of 11,12-EET on the regulation of afferent arteriolar diameter in angiotensin II-infused hypertensive rats.. Male Sprague-Dawley rats received angiotensin II (60 ng/min) or vehicle via an osmotic minipump. Angiotensin II-infused hypertensive and vehicle-infused normotensive rats were studied for 2 weeks following implantation of the minipump. Renal microvascular responses to the sulfonimide analog of 11,12-EET (11,12-EET-SI) and angiotensin II were observed utilizing the in-vitro juxtamedullary nephron preparation. Renal cortical epoxygenase enzyme protein levels were quantified by Western blot analysis. Renal microvessels were also isolated and epoxygenase metabolite levels measured by negative ion chemical ionization (NICI)/gas chromatography-mass spectroscopy.. Systolic blood pressure averaged 118 +/- 2 mmHg prior to pump implantation and increased to 185 +/- 7 mmHg in rats infused with angiotensin II for 2 weeks. Afferent arteriolar diameters of 2-week normotensive animals averaged 22 +/- 1 microm. Diameters of the afferent arterioles were 17% smaller in hypertensive rats (P< 0.05); however, arterioles from both groups responded to 11,12-EET-SI (100 nmol) with similar 15-17% increases in diameter. As we previously demonstrated, the afferent arteriolar reactivity to angiotensin II was enhanced in angiotensin II-infused animals. Interestingly, elevation of 11,12-EET-SI levels to 100 nmol reversed the enhanced vascular reactivity to angiotensin II associated with angiotensin II hypertension. Renal microvascular EET levels were not different between groups and averaged 81 +/- 9 and 87 +/- 13 pg/mg per 30 min in normotensive and hypertensive animals, respectively. Renal cortical microsomal levels of the epoxygenase CYP2C23 and CYP2C11 proteins were also similar in normotensive and angiotensin II hypertensive rats.. Taken together, these data support the concept that renal microvascular 11,12-EET activity and levels may not properly offset the enhanced angiotensin II renal vasoconstriction during angiotensin II hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin II; Animals; Arterioles; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Drug Synergism; Hypertension; Kidney Cortex; Male; Microcirculation; Microsomes; Rats; Rats, Sprague-Dawley; Renal Circulation; Sulfonamides; Vasoconstriction | 2001 |
Lipoxygenase-dependent mechanisms in hypertension.
This study was designed to examine the contribution of lipoxygenase products to mechanisms of vascular contraction and elevated blood pressure in rats with aortic coarctation-induced hypertension. In cytosolic fractions of aortae taken from hypertensive rats, 12-lipoxygenase protein was increased as compared to normotensive controls. Aortic rings from hypertensive, but not from normotensive rats, exhibited a basal tone which was reduced 74+/-12 and 71+/-22%, respectively, by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (CDC, 10(-5) mol/L) and 5,8,11-eicosatriynoic acid (ETI, 10(-5) mol/L). CDC (8 mg/kg s.c.) did not affect the blood pressure of normotensive rats but decreased that of hypertensive rats from 182+/-6 to 151+/-10 mm Hg. The blood pressure lowering effect of CDC was blunted in hypertensive rats pretreated with indomethacin or antibodies against 5,6-dihydro-prostaglandin I2. These data suggest contribution of lipoxygenase-derived products to mechanisms underlying aortic smooth muscle basal tone and elevated blood pressure in rats with aortic coarctation-induced hypertension. The vasodepressor effect of CDC depends on a mechanism involving vasodilatory prostaglandins. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Aorta, Thoracic; Blood Pressure; Caffeic Acids; Cyclooxygenase Inhibitors; Disease Models, Animal; Epoprostenol; Hypertension; Indomethacin; Leukotrienes; Lipoxygenase; Lipoxygenase Inhibitors; Male; Muscle, Smooth, Vascular; Prostaglandins, Synthetic; Rats; Rats, Sprague-Dawley; Vasoconstriction; Vasoconstrictor Agents | 2000 |
Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney.
Epoxyeicosatrienoic acids (EETs) are major products of cytochrome P450 (CYP)-catalyzed metabolism of arachidonic acid in the kidney. The potent effect of EETs on renal vascular tone and tubular ion and water transport implicates their role in the regulation of renal function and blood pressure. The present study was designed to test the hypothesis that CYP-catalyzed EET formation was altered in the spontaneously hypertensive rat (SHR) kidney. The formation of 14,15- and 11,12-EET was approximately 2-fold higher in incubations of arachidonic acid with SHR renal cortical microsomes relative to microsomes from normotensive Wistar-Kyoto (WKY) rats. This was consistent with increased expression of a CYP2J2 immunoreactive protein in the SHR cortex and outer medulla. In contrast, there was no significant difference in the levels of the CYP2E and CYP2C epoxygenases in SHR and WKY kidneys. Protein and RNA analysis suggests that the CYP2J2 immunoreactive protein that is overexpressed in the SHR kidney is distinct from the known rat CYP2J isoforms. EET formation also was documented in vivo from measurements of urinary EET excretion. Importantly, the excretion rates of 14,15-, and 11,12-EETs were 2.5- and 1.8-fold higher, respectively, in SHR than WKY kidney. These studies provide both in vitro and in vivo evidence for increased EET formation in the SHR kidney and identify a novel CYP2J2 immunoreactive protein that is differentially expressed in the hypertensive kidney. In light of the known biological properties of the EETs, these findings may be important in elucidating the mechanisms that control renal vascular tone and tubular ion transport in the SHR. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Hypertension; Kidney; Liver; Male; Oxygenases; Rats; Rats, Inbred SHR; Rats, Inbred WKY; RNA, Messenger | 2000 |
Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids.
The cytochrome P450-derived epoxyeicosatrienoic acids (EETs) have potent effects on renal vascular reactivity and tubular sodium and water transport; however, the role of these eicosanoids in the pathogenesis of hypertension is controversial. The current study examined the hydrolysis of the EETs to the corresponding dihydroxyeicosatrienoic acids (DHETs) as a mechanism for regulation of EET activity and blood pressure. EET hydrolysis was increased 5- to 54-fold in renal cortical S9 fractions from the spontaneously hypertensive rat (SHR) relative to the normotensive Wistar-Kyoto (WKY) rat. This increase was most significant for the 14,15-EET regioisomer, and there was a clear preference for hydrolysis of 14, 15-EET over the 8,9- and 11,12-EETs. Increased EET hydrolysis was consistent with increased expression of soluble epoxide hydrolase (sEH) in the SHR renal microsomes and cytosol relative to the WKY samples. The urinary excretion of 14,15-DHET was 2.6-fold higher in the SHR than in the WKY rat, confirming increased EET hydrolysis in the SHR in vivo. Blood pressure was decreased 22+/-4 mm Hg (P:<0.01) 6 hours after treatment of SHRs with the selective sEH inhibitor N:, N:'-dicyclohexylurea; this treatment had no effect on blood pressure in the WKY rat. These studies identify sEH as a novel therapeutic target for control of blood pressure. The identification of a potent and selective inhibitor of EET hydrolysis will be invaluable in separating the vascular effects of the EET and DHET eicosanoids. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Blood Pressure; Cytosol; Eicosanoids; Enzyme Inhibitors; Epoxide Hydrolases; Epoxy Compounds; Hydrolysis; Hypertension; Kidney Cortex; Male; Microsomes; Microsomes, Liver; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Species Specificity; Urea | 2000 |
Spontaneously hypertensive rats: eicosa-8,11,14-trienoic acid metabolism and arachidonic acid biosynthesis.
Delta 9, delta 6 and delta 5 desaturation activity and the thioesterification of eicosa-8,11,14-trienoic acid (DGLA) were measured in spontaneously hypertensive rats (SHR) compared to normotensive controls (WKY). SHR exhibited lower levels in the long-chain fatty acyl-CoA (LCFA) synthetase and in delta 6 and delta 5 desaturase activities in liver. The enzymatic activity changes were reflected on the fatty acid composition of liver microsomes. In testis, the thioesterification of DGLA and its conversion to arachidonic acid, (AA), at the delta 5 desaturation step were also depressed in SHR. We conclude that, in SHR, the alteration in polyunsaturated fatty acid (PUFA) metabolism may influence the synthesis of AA-derived eicosanoids involved in the control of blood pressure regulation. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Fatty Acids, Monounsaturated; Hypertension; Male; Microsomes, Liver; Palmitic Acid; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 1996 |
Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats.
The renal metabolism of arachidonic acid (AA) was compared in male and female prehypertensive Dahl salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) rats maintained on a low- (0.3%) sodium chloride diet. Renal cortical microsomes incubated with AA produced 20-hydroxyeicosatetraenoic acid (20-HETE), 14,15- and 11,12-epoxyeicosatrienoic acids, and a new metabolite of AA, 11,12-epoxy-20-hydroxyeicosatrienoic acid. The production of 20-HETE was similar in cortical microsomes of female SS/Jr and SR/Jr rats maintained on a low-salt diet (72 +/- 5 vs. 66 +/- 3 pmol.min-1.mg protein-1); however, the formation of epoxygenase metabolites was significantly less in SS/Jr than in SR/Jr rats (45 +/- 2 vs. 70 +/- 3 pmol.min-1.mg protein-1). Outer medullary microsomes produced primarily 20-HETE, and the formation of this compound was significantly lower in SS/Jr than in SR/Jr female rats fed a low-salt diet (8 +/- 2 vs. 18 +/- 3 pmol.min-1.mg protein-1). Renal papillary microsomes produced prostaglandin E2 and F2 alpha, and the formation of these compounds was similar in female SS/Jr and SR/Jr rats fed a low-salt diet. Similar differences in the metabolism of AA by P-450 were observed in microsomes prepared from the renal cortex and outer medulla of male SS/Jr and SR/Jr rats. These results indicate that the renal metabolism of AA by P-450 is altered in prehypertensive Dahl SS/Jr rats; however, the functional significance of this system in resetting renal function and in the development of hypertension in this model remains to be established. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Drug Resistance; Female; Gas Chromatography-Mass Spectrometry; Hydroxyeicosatetraenoic Acids; Hypertension; Kidney; Male; Prostaglandins; Rats; Rats, Inbred Strains; Sodium Chloride | 1994 |
Abnormalities in dihomo-gamma-linolenic acid release in the pathogenesis of hypertension.
Spontaneously hypertensive rats (SHR) respond to angiotensin and norepinephrine with an exaggerated pressor response. We have investigated the possibility that increased vascular reactivity in SHR may be related to a reduced synthesis of prostaglandin E1 (PGE1) resulting from a defect in the release of its precursor, dihomo-gamma-linoleic acid (DGLA). Isolated perfused mesenteric vascular beds of SHR and age matched Wistar-Kyoto rats (WKY) were perfused with Kreb's bicarbonate buffer. The effluent was collected and the fatty acid composition determined by gas chromatography. In SHR the release of DGLA, arachidonic acid, eicosapentaenoic acid, and virtually all other fatty acids detected in the effluent were reduced when compared to their normotensive controls. This difference could not be explained by low tissue fatty acid levels because these were higher in SHR. Evening primrose oil (EPO) when added to the diet increased the release of DGLA but not of other prostanoid precursors. EPO also reduced vascular reactivity and reduced blood pressure in SHR. It is suggested that the defect in the release of DGLA may be involved in the pathogenesis of hypertension because it occurs early before hypertension has actually occurred. Topics: 8,11,14-Eicosatrienoic Acid; Alprostadil; Animals; Arachidonic Acid; Blood Pressure; Chromatography, Gas; Eicosapentaenoic Acid; Fatty Acids; Fatty Acids, Essential; gamma-Linolenic Acid; Hypertension; Hypolipidemic Agents; Linoleic Acids; Male; Mesentery; Norepinephrine; Oenothera biennis; Plant Oils; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Vascular Resistance | 1993 |
Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension.
Arachidonic acid is metabolized by means of P450 isoenzyme(s) to form epoxyeicosatrienoic acids (EETs) and their corresponding dihydroxy derivatives (DHETs). In the present study, we established the presence in human urine of 8,9-, 11,12-, and 14,15-EETs and their corresponding DHETs by developing quantitative assays and using negative ion, chemical ionization GC/MS and octadeuterated internal standards. Urinary excretion of 8,9- and 11,12-DHET increased in healthy pregnant women compared with nonpregnant female volunteers. By contrast, excretion of 11,12-DHET and 14,15-DHET, but not the 8,9-DHET regioisomer, increased even further in patients with pregnancy-induced hypertension. Intravenous administration of [3H]14,15-EET to three dogs markedly increased its DHET in plasma. The terminal half-life ranged from 7.9-12.3 min and the volume of distribution (3.5-5.3 liters) suggested limited distribution outside the plasma compartment. Negligible radioactivity was detected in urine; this fact infers that under physiological circumstances, urinary DHETs largely derive from the kidney. That P450 metabolites of arachidonic acid are formed in humans supports the hypothesis that these metabolites contribute to the physiological response to normal pregnancy and the pathophysiology of pregnancy-induced hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Dogs; Fatty Acids, Unsaturated; Female; Gas Chromatography-Mass Spectrometry; Humans; Hypertension; Pre-Eclampsia; Pregnancy; Pregnancy Complications, Cardiovascular; Radioisotope Dilution Technique; Reference Values; Tritium | 1990 |
Effect of 14,15-epoxyeicosatrienoic acid infusion on blood pressure in normal and hypertensive rats.
Intravenous (IV) and intraarterial (IA) infusion of 14,15-epoxyeicosatrienoic acid (14,15-EET) produced a dose-dependent decrease in mean arterial blood pressure (MAP) in normal and spontaneously hypertensive rats (SHR). The hypotensive effect of 14,15-EET was observed from 1 microgram/kg to 10 micrograms/kg with a maximum reduction in MAP as much as 45 +/- 6 mmHg in both normal and SHR. In normal rats the hypotensive effect was found to be more pronounced when 14,15-EET was infused IA than IV. This suggests that 14,15-EET may be metabolized as it passes through the lungs. However, in SHR there was no difference in MAP when 14,15-EET was infused either IA or IV. This indicates that there is a differential removal of the epoxide across the pulmonary circulation. Administration of indomethacin failed to inhibit the hypotensive action of 14,15-EET, suggesting that it may not be a cyclo-oxygenase dependent mechanism. However, the PAF antagonist of BN-52021 inhibited the hypotensive action of 14,15-EET. This therefore, suggests that the release of PAF may be involved in the hypotensive action of this epoxide of arachidonic acid. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Antihypertensive Agents; Blood Pressure; Diterpenes; Dose-Response Relationship, Drug; Fatty Acids, Unsaturated; Ginkgolides; Hypertension; Indomethacin; Isomerism; Lactones; Male; Plant Extracts; Rats; Rats, Inbred SHR; Rats, Inbred Strains; Reference Values | 1990 |
Release of fatty acids by perfused vascular tissue in normotensive and hypertensive rats.
The release of fatty acids from perfused mesenteries of spontaneously hypertensive rats (SHR) and control Wistar-Kyoto rats (WKY) was studied. The release of the prostaglandin precursors dihomogammalinolenic acid, arachidonic acid, and eicosapentaenoic acid was reduced in SHR when compared with age-matched WKY. The release of all other fatty acids detected in the effluent was also reduced. The differences in fatty acid release were evident even when tissue levels of the fatty acids were similar or higher in SHR than in controls. The addition of evening primrose oil and fish oil into the diet partially corrected these defects. Evening primrose oil and fish oil both attenuated increases in blood pressure, but fish oil was more potent than primrose oil. Although both diets reduced vascular reactivity, primrose oil was more effective with lower doses of norepinephrine whereas fish oil blunted the effects of both low and high doses of norepinephrine. The possible mechanisms for the effects of primrose oil and fish oil on vascular reactivity are briefly discussed. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Arachidonic Acids; Eicosapentaenoic Acid; Fatty Acids; Hypertension; Male; Phospholipids; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Splanchnic Circulation | 1988 |
Zinc and vascular reactivity in rat mesenteric vessels: possible altered dihomo-gamma-linolenic acid metabolism in spontaneously hypertensive rats.
Zinc at a concentration of 0.4 microgram/ml potentiated pressor responses to norepinephrine in isolated perfused mesenteric vessels of SHR and WKY. At a higher concentration, 3.2 micrograms/ml, it inhibited responses to norepinephrine in WKY but produced no such inhibition in SHR. However, a transient potentiation was observed in SHR with the higher concentration. Pressor responses to potassium in WKY were not affected by zinc at either concentration. In SHR, however, the higher dose of zinc inhibited pressor responses to potassium. The low dose had no effect. Since effects of zinc may be mediated by release of DGLA, we suggest that in SHR DGLA release may be impaired. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Blood Pressure; Drug Synergism; Fatty Acids, Unsaturated; Female; Hypertension; Norepinephrine; Potassium; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Zinc | 1985 |
[In vitro study of delta 6- and delta 5-desaturations of linoleic and dihomo-gamma-linolenic acids during the development of arterial hypertension as a function of age in spontaneously hypertensive rats (SHR) as compared to normotensive rats (WKY)].
delta 6- and delta 5-desaturations of linoleic [1(14)C] or dihomo-gamma-linolenic [2(14)C] acids are partially inhibited, in vitro, in liver microsomes of spontaneously hypertensive rats (SHR) comparatively to normotensive rats (WKY). The inhibition is more light when the animals are young and the blood hypertension not well established. These results are particularly important, for these desaturations are fundamental steps in the biosynthesis of prostaglandins precursors, prostaglandins and their original fatty acids being involved in blood pressure regulation. Topics: 8,11,14-Eicosatrienoic Acid; Aging; Animals; Fatty Acids; Fatty Acids, Unsaturated; Hypertension; Linoleic Acid; Linoleic Acids; Lipids; Liver; Microsomes, Liver; Organ Size; Prostaglandins; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 1984 |
[Content of prostaglandin biosynthesis precursors in the kidney lipids in the development of spontaneous arterial hypertension].
The content of linoleic (18 : 2 omega 6), arachidonic; (20 : 4 omega 6) and eicosatrienic (20 : 3 omega 9) acids was studied and compared in lipids of the renal cortex and papilla of spontaneously hypertensive Okamoto-Aoki rats (SHR) and normotensive Wistar rats (NR) aged 10 days, 1, 2 and 4 months. The level of 18 : 2 omega 6 in lipids of the renal cortex and papilla of SHR was lower at the prehypertensive stage (10 days) and at the stage of persistent hypertension as compared to that seen in NR. The content of 20 : 4 omega 6 in phospholipids and triglycerides of the cortex and in phospholipids of the papilla of SHR did not differ from that in NR. In triglycerides of the papilla of SHR of all age groups, the content of 20 : 4 omega 6 was higher than in NR. In phospholipids of SHR cortex, the content of 20 : 3 omega 9 was higher than that in NR. As for lipids of the papilla, 20 : 3 omega 9 was not detectable either in NR or SHR. It is concluded that the data obtained are of interest for the characteristics of the renal prostaglandin system in SHR. Topics: 8,11,14-Eicosatrienoic Acid; Aging; Animals; Arachidonic Acids; Female; Hypertension; Kidney; Linoleic Acids; Lipids; Male; Phospholipids; Prostaglandins; Rats; Rats, Inbred Strains; Triglycerides | 1984 |
Dihomo-gamma-linolenic acid reverses hypertension induced in rats by diets rich in saturated fat.
This study has shown that hypertension induced in rats by a diet rich in saturated fat (16% coconut oil, 4% palmitic acid by weight) is reversed by the addition of the essential fatty acid, dihomo-gamma-linolenic acid (DHLA), at 5.0% but not at 0.5% of dietary energy. This potent effect of DHLA has been attributed to modulation of prostaglandin biosynthesis. Topics: 8,11,14-Eicosatrienoic Acid; Alprostadil; Animals; Blood Pressure; Dietary Fats; Fatty Acids, Unsaturated; Hypertension; Male; Prostaglandins E; Rats; Rats, Inbred Strains; Time Factors | 1984 |