8-11-14-eicosatrienoic-acid and Hypertension--Pulmonary

8-11-14-eicosatrienoic-acid has been researched along with Hypertension--Pulmonary* in 7 studies

Reviews

2 review(s) available for 8-11-14-eicosatrienoic-acid and Hypertension--Pulmonary

ArticleYear
Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: central role of transient receptor potential C6 channels.
    Journal of cardiovascular pharmacology, 2011, Volume: 57, Issue:2

    Hypoxia induces the constriction of pulmonary resistance arteries, which results in the redistribution of blood from poor to better ventilated areas, thus optimizing its oxygenation. Many different oxygen-sensing mechanisms have been proposed to regulate this process, including cytochrome P450 enzymes. These enzymes, which convert substrates such as arachidonic acid into bioactive epoxides (the epoxyeicosatrienoic acids [EETs]), are highly expressed in the lung as is the soluble epoxide hydrolase which metabolizes the epoxides to their less active diols. The EETs play a well-documented role as endothelium-derived vasodilators in the systemic vasculature, but in the pulmonary circulation, they are generated in vascular smooth muscle cells and potentiate vasoconstriction. Preventing the breakdown of 11,12-EET by the inhibition or genetic deletion of the soluble epoxide hydrolase strongly augments the response to hypoxia. Mechanistically, 11,12-EET potentiates the contractile response by recruiting transient receptor potential C6 channels to caveolae. Indeed, neither 11,12-EET nor hypoxia is able to elicit pulmonary vasoconstriction in TRPC6 knockout mice. The cytochrome and soluble epoxide hydrolase enzymes are also implicated in the vascular remodeling associated with chronic hypoxia and pulmonary hypertension. Thus, targeting this pathway may be in an attractive new therapeutic approach to treat this incapacitating disease.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cytochrome P-450 Enzyme System; Enzyme Activation; Humans; Hypertension, Pulmonary; Mice; TRPC Cation Channels; TRPC6 Cation Channel

2011
Beyond vasodilatation: non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system.
    Trends in pharmacological sciences, 2007, Volume: 28, Issue:1

    Epoxyeicosatrienoic acids (EETs), derived from arachidonic acid by cytochrome P450 epoxygenases, are potent vasodilators that function as endothelium-derived hyperpolarizing factors in some vascular beds. EETs are rapidly metabolized by soluble epoxide hydrolase to form dihydroxyeicosatrienoic acids (DHETs). Recent reports indicate that EETs have several important non-vasomotor regulatory roles in the cardiovascular system. EETs are potent anti-inflammatory agents and might function as endogenous anti-atherogenic compounds. In addition, EETs and DHETs might stimulate lipid metabolism and regulate insulin sensitivity. Thus, pharmacological inhibition of soluble epoxide hydrolase might be useful not only for hypertension but also for abating atherosclerosis, diabetes mellitus and the metabolic syndrome. Finally, although usually protective in the systemic circulation, EETs might adversely affect the pulmonary circulation.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Atherosclerosis; Cardiovascular System; Humans; Hypertension, Pulmonary; Insulin Resistance; Metabolic Syndrome; Molecular Structure; Vasodilation

2007

Other Studies

5 other study(ies) available for 8-11-14-eicosatrienoic-acid and Hypertension--Pulmonary

ArticleYear
CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia-reperfusion injury in vivo and in vitro.
    Respiratory research, 2021, Nov-13, Volume: 22, Issue:1

    Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo.. CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs.. CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway.. CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cells, Cultured; Cytochrome P-450 CYP2J2; Disease Models, Animal; Gene Expression Regulation; Humans; Hypertension, Pulmonary; Male; Rats; Reperfusion Injury; RNA

2021
EETs Elicit Direct Increases in Pulmonary Arterial Pressure in Mice.
    American journal of hypertension, 2016, Volume: 29, Issue:5

    The biological role of epoxyeicosatrienoic acids (EETs) in the regulation of pulmonary circulation is currently under debate. We hypothesized that EETs initiate increases in right ventricular systolic pressure (RVSP) via perhaps, pulmonary vasoconstriction.. Mice were anesthetized with isoflurane. Three catheters, inserted into the left jugular vein, the left carotid artery, and the right jugular vein, were used for infusing EETs, monitoring blood pressure (BP), and RVSP respectively. BP and RVSP were continuously recorded at basal conditions, in response to administration of 4 regioisomeric EETs (5,6-EET; 8,9-EET; 11,12-EET, and 14,15-EET; 1, 2, 5 and 10 ng/g body weight (BW) for each EET), and during exposure of mice to hypoxia.. All 4 EETs initiated dose-dependent increases in RVSP, though reduced BP. 11,12-EET elicited the greatest increment in RVSP among all EET isoforms. To clarify the direct elevation of RVSP in a systemic BP-independent manner, equivalent amounts of 14,15-EET were injected over 1 and 2 minutes respectively. One-minute injection of 14,15-EET elicited significantly faster and greater increases in RVSP than the 2-minute injection, whereas their BP changes were comparable. Additionally, direct injection of low doses of 14,15-EET (0.1, 0.2, 0.5, and 1 ng/g BW) into the right ventricle caused significant increases in RVSP without effects on BP, confirming that systemic vasodilation-induced increases in venous return are not the main cause for the increased RVSP. Acute exposure of mice to hypoxia significantly elevated RVSP, as well as 14,15-EET-induced increases in RVSP.. EETs directly elevate RVSP, a response that may play an important role in the development of hypoxia-induced pulmonary hypertension (PH).

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arterial Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Hypoxia; Infusions, Intravenous; Male; Mice, Inbred C57BL; Pulmonary Artery; Time Factors; Ventricular Function, Right; Ventricular Pressure

2016
EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase.
    American journal of physiology. Lung cellular and molecular physiology, 2015, Dec-15, Volume: 309, Issue:12

    We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Arterial Pressure; Epoxide Hydrolases; Female; Hypertension, Pulmonary; Male; Mice; Mice, Knockout; Pulmonary Artery; Sex Characteristics; Vasoconstriction

2015
Gene delivery of cytochrome p450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats.
    American journal of respiratory cell and molecular biology, 2010, Volume: 43, Issue:6

    Pulmonary arterial hypertension (PAH) is a life-threatening disease that leads to progressive pulmonary hypertension, right heart failure, and death. Endothelial dysfunction and inflammation were implicated in the pathogenesis of PAH. Epoxyeicosatrienoic acids (EETs), products of the cytochrome P450 epoxygenase metabolism of arachidonic acid, are potent vasodilators that possess anti-inflammatory and other protective properties in endothelial cells. We investigated whether gene delivery with the human cytochrome P450 epoxygenase 2J2 (CYP2J2) ameliorates monocrotaline (MCT)-induced pulmonary hypertension in rats. Significant pulmonary hypertension developed 3 weeks after the administration of MCT, but gene therapy with CYP2J2 significantly attenuated the development of pulmonary hypertension and pulmonary vascular remodeling, without causing changes in systemic arterial pressure or heart rate. These effects were associated with increased pulmonary endothelial NO synthase (eNOS) expression and its activity, inhibition of inflammation in the lungs, and transforming growth factor (TGF)-β/type II bone morphogenetic protein receptor (BMPRII)-drosophila mothers against decapentaplegic proteins (Smads) signaling. Collectively, these data suggest that gene therapy with CYP2J2 may have potential as a novel therapeutic approach to this progressive and oftentimes lethal disorder.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Bone Morphogenetic Protein Receptors, Type II; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Endothelial Cells; Gene Transfer Techniques; Genetic Therapy; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Interleukin-10; Interleukin-6; Monocrotaline; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type III; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Platelet-Derived Growth Factor; Signal Transduction; Survival Analysis; Tissue Extracts; Transforming Growth Factor beta

2010
Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats.
    Journal of hypertension, 2009, Volume: 27, Issue:2

    The soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to their less active dihydroxy derivatives. Because EETs have antiinflammatory properties, we determined whether or not inhibition of sEH attenuates disease development in the monocrotaline model of pulmonary hypertension in rats.. sEH inhibition was achieved using 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (25 mg/l) and cis- 4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (5 mg/l) administered via drinking water starting 3 days prior to monocrotaline injection (60 mg/kg).. Monocrotaline induced the development of progressive pulmonary hypertension. sEH inhibition increased the plasma ratio of EETs to DHETs and attenuated the monocrotaline-induced increase in pulmonary artery medial wall thickness as well as the degree of vascular muscularization. Moreover, right ventricular pressure was significantly lower in the group treated with sEH inhibitors. Pulmonary sEH protein expression and sEH activity, as well as pulmonary cytochrome P450 epoxygenase activity were all impaired in monocrotaline-treated rats as compared with control animals. sEH inhibitors, however, increased the plasma ratio of EETs to dihydroxy epoxyeicosatrienoic acids. Monocrotaline induced the proliferation of pulmonary endothelial and vascular smooth muscle cells in vivo as determined by 5-Bromo-2'-deoxy-Uridine incorporation, and this effect was significantly blunted in animals treated with sEH inhibitors. Proliferation of cultured pulmonary smooth muscle cell, however, was not affected by EETs or sEH inhibitors suggesting that the in-vivo effects are a consequence of a direct EET-mediated protection against the inflammation induced by monocrotaline.. sEH inhibition reduces pulmonary vascular remodeling and the development of pulmonary hypertension in the monocrotaline model of primary pulmonary hypertension in rats.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cell Proliferation; Cells, Cultured; Epoxide Hydrolases; Hypertension, Pulmonary; Male; Monocrotaline; Pulmonary Artery; Rats; Rats, Inbred WKY

2009