8-11-14-eicosatrienoic-acid and Hyperemia

8-11-14-eicosatrienoic-acid has been researched along with Hyperemia* in 9 studies

Reviews

2 review(s) available for 8-11-14-eicosatrienoic-acid and Hyperemia

ArticleYear
Identifying endothelium-derived hyperpolarizing factor: recent approaches to assay the role of epoxyeicosatrienoic acids.
    Japanese journal of pharmacology, 2001, Volume: 86, Issue:4

    Investigation of endothelial regulation of vascular reactivity and tone has led to the discovery of chemical mediators such as nitric oxide (NO) and prostacyclin (PGI2). Evidence has emerged indicating another as yet unidentified hyperpolarizing agent (endothelium-derived hyperpolarizing factor or EDHF) that is different from NO and PGI2 and exerts it effects through calcium-activated potassium channels (KCa). Previous studies to identify EDHF have been carried out using inhibitors that block NOS and COX before application of KCa channel and/or muscarinic receptor antagonists. Such pharmacological manipulation has complicated interpretation of results, clearly pointing to the need for altered approaches to verify previous studies. Evidence has emerged that potential EDHF candidates vary with vessel size, species and tissue beds, indicating that there may be more than one EDHF. To date, the most commonly described and best characterized of them all are a set of arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs). These compounds are synthesized both intra- and extravascularly. Until recently, methodology to detect EETs in the microvasculature has been tedious and expensive, limiting the experimentation that is necessary to confirm EETs as an EDHF. This review describes state-of-the-art methods for assaying EETs in biological samples, after summarizing evidence for EETs as an EDHF and introducing emerging concepts of the role of extravascular EETs in linking neuronal activity to localized blood flow during functional hyperemia.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Astrocytes; Biological Assay; Biological Factors; Bradykinin; Endothelium, Vascular; Fluorescence; Humans; Hyperemia; Muscle, Smooth, Vascular; Potassium Channels; Vasodilation

2001
Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites.
    Stroke, 1998, Volume: 29, Issue:1

    Cerebral blood flow is tightly coupled to neuronal metabolic activity, a phenomenon referred to as functional hyperemia. The mechanisms underlying functional hyperemia in the brain have been extensively studied, but the link between neuronal activation and nutritive blood flow has yet to be defined. Recent investigations by our laboratory and others have identified a potential role for astrocytes as an intermediary cell type in this process.. This short review will develop the hypothesis that cytochrome P450 epoxygenase activity in astrocytes catalyzes formation of epoxyeicosatrienoic acids (EETs), which act as potent dilators of cerebral vessels and are released in response to glutamate receptor activation within astrocytes. Neuronal activity stimulates release of arachidonic acid from the phospholipid pool of astrocytic membranes. We provide evidence that the arachidonic acid released on stimulation of glutamate receptors within astrocytes is metabolized by cytochrome P450 2C11 cDNA enzymes into EETs.. The EETs thus formed will be released and activate K+ channels, increase outward K+ current, and hyperpolarize the plasma membrane. The resulting membrane hyperpolarization inhibits voltage-gated Ca2+ channels and leads to arteriolar dilation, thereby increasing regional nutritive blood flow in response to neuronal activity.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acids; Arterioles; Aryl Hydrocarbon Hydroxylases; Astrocytes; Brain; Calcium Channels; Cell Membrane; Cerebrovascular Circulation; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Humans; Hyperemia; Membrane Lipids; Membrane Potentials; Neurons; Oxygenases; Phospholipids; Receptors, Glutamate; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases; Vasodilation; Vasodilator Agents

1998

Trials

1 trial(s) available for 8-11-14-eicosatrienoic-acid and Hyperemia

ArticleYear
Involvement of cytochrome epoxygenase metabolites in cutaneous postocclusive hyperemia in humans.
    Journal of applied physiology (Bethesda, Md. : 1985), 2013, Jan-15, Volume: 114, Issue:2

    Several mediators contribute to postocclusive reactive hyperemia (PORH) of the skin, including sensory nerves and endothelium-derived hyperpolarizing factors. The main objective of our study was to investigate the specific contribution of epoxyeicosatrienoic acids in human skin PORH. Eight healthy volunteers were enrolled in two placebo-controlled experiments. In the first experiment we studied the separate and combined effects of 6.5 mM fluconazole, infused through microdialysis fibers, and lidocaine/prilocaine cream on skin PORH following 5 min arterial occlusion. In the second experiment we studied the separate and combined effects of 6.5 mM fluconazole and 10 mM N(G)-monomethyl-l-arginine (l-NMMA). Skin blood flux was recorded using two-dimensional laser speckle contrast imaging. Maximal cutaneous vascular conductance (CVC(max)) was obtained following 29 mM sodium nitroprusside perfusion. The PORH peak at the placebo site averaged 66 ± 11%CVC(max). Compared with the placebo site, the peak was significantly lower at the fluconazole (47 ± 10%CVC(max); P < 0.001), lidocaine (29 ± 10%CVC(max); P < 0.001), and fluconazole + lidocaine (30 ± 10%CVC(max); P < 0.001) sites. The effect of fluconazole on the area under the curve was more pronounced. In the second experiment, the PORH peak was significantly lower at the fluconazole site, but not at the l-NMMA or combination site, compared with the placebo site. In addition to sensory nerves cytochrome epoxygenase metabolites, putatively epoxyeicosatrienoic acids, play a major role in healthy skin PORH, their role being more important in the time course rather than the peak.

    Topics: 8,11,14-Eicosatrienoic Acid; Adult; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Female; Fluconazole; Humans; Hyperemia; Lidocaine; Male; NG-Nitroarginine Methyl Ester; Nitroprusside; Regional Blood Flow; Sensory Receptor Cells; Skin; Skin Diseases

2013

Other Studies

6 other study(ies) available for 8-11-14-eicosatrienoic-acid and Hyperemia

ArticleYear
Role of endothelium-pericyte signaling in capillary blood flow response to neuronal activity.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2021, Volume: 41, Issue:8

    Local blood flow in the brain is tightly coupled to metabolic demands, a phenomenon termed functional hyperemia. Both capillaries and arterioles contribute to the hyperemic response to neuronal activity via different mechanisms and timescales. The nature and specific signaling involved in the hyperemic response of capillaries versus arterioles, and their temporal relationship are not fully defined. We determined the time-dependent changes in capillary flux and diameter versus arteriolar velocity and flow following whisker stimulation using optical microangiography (OMAG) and two-photon microscopy. We further characterized depth-resolved responses of individual capillaries versus capillary networks. We hypothesized that capillaries respond first to neuronal activation, and that they exhibit a coordinated response mediated via endothelial-derived epoxyeicosatrienoates (EETs) acting on pericytes. To visualize peri-capillary pericytes, we used Tie2-GFP/NG2-DsRed mice, and to determine the role of endothelial-derived EETs, we compared cerebrovascular responses to whisker stimulation between wild-type mice and mice with lower endothelial EETs (Tie2-hsEH). We found that capillaries respond immediately to neuronal activation in an orchestrated network-level manner, a response attenuated in Tie2-hsEH and inhibited by blocking EETs action on pericytes. These results demonstrate that capillaries are first responders during functional hyperemia, and that they exhibit a network-level response mediated via endothelial-derived EETs' action on peri-capillary pericytes.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arterioles; Capillaries; Electric Stimulation; Endothelium; Epoxide Hydrolases; Hyperemia; Male; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence, Multiphoton; Neurons; Pericytes; Regional Blood Flow; Tomography, Optical Coherence; Vasoconstriction

2021
Aortic Stiffness Is Associated with Coronary Microvascular Dysfunction in Patients with Non-obstructive Coronary Artery Disease.
    Internal medicine (Tokyo, Japan), 2020, Volume: 59, Issue:23

    Objective Associations between aortic stiffness and cardiovascular disease events are mediated in part by pathways that include coronary microvascular dysfunction (CMD) and remodeling. However, the relationship between aortic stiffness and CMD remains unclear. The present study aimed to determine whether aortic stiffness causes CMD as evaluated by the hyperemic microvascular resistance index (hMVRI) in patients with non-obstructive coronary artery disease (CAD). Methods The intracoronary physiological variables in 209 coronary arteries were evaluated in 121 patients with non-obstructive CAD (fractional flow reserve >0.80) or reference vessels. The cardio-ankle vascular index (CAVI) as a measure of aortic stiffness and atherosclerotic risk factors were also measured. Results Univariate analyses showed that hMVRI correlated with age (β=0.24, p=0.007), eicosapentaenoic acid (EPA; β=-0.18, p=0.048), EPA/arachidonic acid (AA) (EPA/AA) ratio (β=-0.22, p=0.014) and CAVI (β=0.30, p=0.001). A multivariate regression analysis identified CAVI (β=0.25, p=0.007) and EPA/AA ratio (β=-0.26, SE=0.211, p=0.003) as independent determinants of hMVRI. Conclusion Aortic stiffness may cause CMD in patients with non-obstructive CAD via increased coronary microvascular resistance. Aortic stiffness is associated with CMD which is evaluated as hyperemic microvascular resistance in patients with non-obstructive CAD.

    Topics: 8,11,14-Eicosatrienoic Acid; Aged; Arachidonic Acid; Cardiac Catheterization; Cardio Ankle Vascular Index; Coronary Artery Disease; Coronary Vessels; Docosahexaenoic Acids; Echocardiography; Eicosapentaenoic Acid; Female; Fractional Flow Reserve, Myocardial; Humans; Hyperemia; Male; Microcirculation; Microvascular Angina; Microvessels; Middle Aged; Multivariate Analysis; Risk Factors; Vascular Stiffness

2020
Epoxyeicosanoids as mediators of neurogenic vasodilation in cerebral vessels.
    American journal of physiology. Heart and circulatory physiology, 2009, Volume: 296, Issue:5

    Epoxyeicosatrienoic acids (EETs) are potent vasodilators produced from arachidonic acid by cytochrome P-450 (CYP) epoxygenases and metabolized to vicinal diols by soluble epoxide hydrolase (sEH). In the brain, EETs are produced by astrocytes and the vascular endothelium and are involved in the control of cerebral blood flow (CBF). Recent evidence, however, suggests that epoxygenases and sEH are present in perivascular vasodilator nerve fibers innervating the cerebral surface vasculature. In the present study, we tested the hypothesis that EETs are nerve-derived relaxing factors in the cerebral circulation. We first traced these fibers by retrograde labeling in the rat to trigeminal ganglia (TG) and sphenopalatine ganglia (SPG). We then examined the expression of CYP epoxygenases and sEH in these ganglia. RT-PCR and Western blot analysis identified CYP2J3 and CYP2J4 epoxygenase isoforms and sEH in both TG and SPG, and immunofluorescence double labeling identified CYP2J and sEH immunoreactivity in neuronal cell bodies of both ganglia. To evaluate the functional role of EETs in neurogenic vasodilation, we elicited cortical hyperemia by electrically stimulating efferent cerebral perivascular nerve fibers and by chemically stimulating oral trigeminal fibers with capsaicin. Cortical blood flow responses were monitored by laser-Doppler flowmetry. Local administration to the cortical surface of the putative EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (30 mumol/l) attenuated CBF responses to electrical and chemical stimulation. These results suggest that EETs are produced by perivascular nerves and play a role in neurogenic vasodilation of the cerebral vasculature. The findings have important implications to such clinical conditions as migraine, vasospasm after subarachnoid hemorrhage, and stroke.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Capsaicin; Cerebral Cortex; Cerebrovascular Circulation; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 2; Eicosanoids; Electric Stimulation; Epoxide Hydrolases; Hyperemia; Laser-Doppler Flowmetry; Male; Middle Cerebral Artery; Neurons; Rats; Rats, Wistar; Trigeminal Ganglion; Ultrasonography; Vasodilation

2009
Interaction of nitric oxide, 20-HETE, and EETs during functional hyperemia in whisker barrel cortex.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 295, Issue:2

    Nitric oxide (NO) modulates vasodilation in cerebral cortex during sensory activation. NO is known to inhibit the synthesis of 20-HETE, which has been implicated in arteriolar constriction during astrocyte activation in brain slices. We tested the hypothesis that the attenuated cerebral blood flow (CBF) response to whisker stimulation seen after NO synthase (NOS) inhibition requires 20-HETE synthesis and that the ability of an epoxyeicosatrienoic acids (EETs) antagonist to reduce the CBF response is blunted after NOS inhibition but restored with simultaneous blockade of 20-HETE synthesis. In anesthetized rats, the increase in CBF during whisker stimulation was attenuated after the blockade of neuronal NOS with 7-nitroindazole. Subsequent administration of the 20-HETE synthesis inhibitor N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) restored the CBF response to control levels. After the administration of 7-nitroindazole, the inhibitory effect of an EETs antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) on the CBF response was lost, whereas the simultaneous administration of 7-nitroindazole and HET0016 restored the inhibitory effect of 14,15-EEZE. The administration of HET0016 alone had only a small effect on the evoked CBF response in rats. Furthermore, in neuronal NOS(+/+) and NOS(-/-) mice, HET0016 administration did not increase the CBF response to whisker stimulation. In neuronal NOS(+/+) mice, HET0016 also blocked the reduction in the response seen with acute NOS inhibition. These results indicate that 20-HETE synthesis normally does not substantially restrict functional hyperemia. Increased NO production during functional activation may act dynamically to suppress 20-HETE synthesis or downstream signaling and permit EETs-dependent vasodilation. With the chronic loss of neuronal NOS in mice, other mechanisms apparently suppress 20-HETE synthesis or signaling.

    Topics: 8,11,14-Eicosatrienoic Acid; Amidines; Animals; Cerebral Cortex; Cerebrovascular Circulation; Enzyme Inhibitors; Hydroxyeicosatetraenoic Acids; Hyperemia; Indazoles; Male; Mechanotransduction, Cellular; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons, Afferent; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Physical Stimulation; Rats; Rats, Wistar; Time Factors; Vasodilation; Vibrissae

2008
Chick chorioallantoic membrane as an in vivo model to study vasoreactivity: characterization of development-dependent hyperemia induced by epoxyeicosatrienoic acids (EETs).
    The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 2005, Volume: 285, Issue:2

    Shell-less culture of chick chorioallantoic membrane (CAM) of developing chicken embryos is a useful model to evaluate the effects of vascular agents. We assessed the response of CAM vessels to epoxyeicosatrienoic acids (EETs), derivatives of the essential fatty acid arachidonic acid, that have a number of important biological functions, including dilation of microvessels in the coronary, cerebral, renal, and mesenteric circulations. Three of four regioisomers of EETs, 14,15-, 11,12-, and 8,9-EET, induced a characteristic dose-dependent acute hyperemia within 4 min after application on 10-day-old CAMs. This response was marked in early stages of development (between days 8 and 10), but the frequency and intensity of the response were reduced after 11 days of development. Histological examination demonstrated that the hyperemia was not due to extravasation of erythrocytes. However, many capillaries were distended and contained densely packed erythrocytes as compared to uniformly arranged vessels and erythrocytes in untreated CAMs. Transmission electron microscopy showed the basal laminae surrounding capillaries remained intact, similar to those in vehicle-treated or untreated CAM tissue. The hyperemia was specific to EETs since we did not observe it to be induced by other vasodilators such as nitric oxide or prostacyclin. In conclusion, we report a novel vascular response to EETs using the CAM as an in vivo model. These lipids specifically distend a subset of capillaries in a dose- and development-dependent manner.

    Topics: 8,11,14-Eicosatrienoic Acid; Animals; Capillaries; Chick Embryo; Chorioallantoic Membrane; Culture Techniques; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperemia; Neovascularization, Physiologic; Nitric Oxide Donors; Time Factors; Vasodilator Agents; Vitelline Membrane

2005
Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors.
    American journal of physiology. Heart and circulatory physiology, 2002, Volume: 283, Issue:5

    Application of glutamate to glial cell cultures stimulates the formation and release of epoxyeicosatrienoic acids (EETs) from arachidonic acid by cytochome P-450 epoxygenases. Epoxygenase inhibitors reduce the cerebral vasodilator response to glutamate and N-methyl-D-aspartate. We tested the hypothesis that epoxygenase inhibitors reduce the somatosensory cortical blood flow response to whisker activation. In chloralose-anesthetized rats, percent changes in cortical perfusion over whisker barrel cortex were measured by laser-Doppler flowmetry during whisker stimulation. Two pharmacologically distinct inhibitors were superfused subdurally: 1) N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), an epoxygenase substrate inhibitor; and 2) miconazole, a reversible cytochrome P-450 inhibitor acting on the heme moiety. Superfusion with 5 micromol/l MS-PPOH decreased the hyperemic response to whisker stimulation by 28% (from 25 +/- 9 to 18 +/- 7%, means +/- SD, n = 8). With 20 micromol/l MS-PPOH superfusion, the response was decreased by 69% (from 28 +/- 9% to 9 +/- 4%, n = 8). Superfusion with 20 micromol/l miconazole decreased the flow response by 67% (from 31 +/- 6% to 10 +/- 3%, n = 8). Subsequent superfusion with vehicle restored the response to 26 +/- 11%. Indomethacin did not prevent MS-PPOH inhibition of the flow response, suggesting that EET-related vasodilation was not dependent solely on cyclooxygenase metabolism of 5,6-EET. Neither MS-PPOH nor miconazole changed baseline flow, reduced the blood flow response to an adenosine A(2) agonist, or decreased somatosensory evoked potentials. The marked reduction of the cortical flow response to whisker stimulation with two different types of epoxygenase inhibitors indicates that EETs play an important role in the physiological coupling of blood flow to neural activation.

    Topics: 8,11,14-Eicosatrienoic Acid; Amides; Animals; Antifungal Agents; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Hyperemia; Laser-Doppler Flowmetry; Male; Miconazole; Rats; Rats, Wistar; Somatosensory Cortex; Vibrissae

2002