8-11-14-eicosatrienoic-acid has been researched along with Atherosclerosis* in 7 studies
1 review(s) available for 8-11-14-eicosatrienoic-acid and Atherosclerosis
Article | Year |
---|---|
Beyond vasodilatation: non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system.
Epoxyeicosatrienoic acids (EETs), derived from arachidonic acid by cytochrome P450 epoxygenases, are potent vasodilators that function as endothelium-derived hyperpolarizing factors in some vascular beds. EETs are rapidly metabolized by soluble epoxide hydrolase to form dihydroxyeicosatrienoic acids (DHETs). Recent reports indicate that EETs have several important non-vasomotor regulatory roles in the cardiovascular system. EETs are potent anti-inflammatory agents and might function as endogenous anti-atherogenic compounds. In addition, EETs and DHETs might stimulate lipid metabolism and regulate insulin sensitivity. Thus, pharmacological inhibition of soluble epoxide hydrolase might be useful not only for hypertension but also for abating atherosclerosis, diabetes mellitus and the metabolic syndrome. Finally, although usually protective in the systemic circulation, EETs might adversely affect the pulmonary circulation. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Atherosclerosis; Cardiovascular System; Humans; Hypertension, Pulmonary; Insulin Resistance; Metabolic Syndrome; Molecular Structure; Vasodilation | 2007 |
6 other study(ies) available for 8-11-14-eicosatrienoic-acid and Atherosclerosis
Article | Year |
---|---|
Dihomo-γ-linolenic acid inhibits several key cellular processes associated with atherosclerosis.
Atherosclerosis and its complications are responsible for one in three global deaths. Nutraceuticals show promise in the prevention and treatment of atherosclerosis but require an indepth understanding of the mechanisms underlying their actions. A previous study showed that the omega-6 fatty acid, dihomo-γ-linolenic acid (DGLA), attenuated atherosclerosis in the apolipoprotein E deficient mouse model system. However, the mechanisms underlying such protective effects of DGLA are poorly understood and were therefore investigated. We show that DGLA attenuates chemokine-driven monocytic migration together with foam cell formation and the expression of key pro-atherogenic genes induced by three pro-inflammatory cytokines in human macrophages. The effect of DGLA on interferon-γ signaling was mediated via inhibition of signal transducer and activator of transcription-1 phosphorylation on serine 727. In relation to anti-foam cell action, DGLA inhibits modified LDL uptake by both macropinocytosis and receptor-mediated endocytosis, the latter by reduction in expression of two key scavenger receptors (SR-A and CD36), and stimulates cholesterol efflux from foam cells. DGLA also improves macrophage mitochondrial bioenergetic profile by decreasing proton leak. Gamma-linolenic acid and prostaglandin E1, upstream precursor and key metabolite respectively of DGLA, also acted in an anti-atherogenic manner. The actions of DGLA extended to other key atherosclerosis-associated cell types with attenuation of endothelial cell proliferation and migration of smooth muscle cells in response to platelet-derived growth factor. This study provides novel insights into the molecular mechanisms underlying the anti-atherogenic actions of DGLA and supports further assessments on its protective effects on plaque regression in vivo and in human trials. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Atherosclerosis; Cell Movement; Cell Proliferation; Cells, Cultured; Chemokine CCL2; Cytokines; Foam Cells; Gene Expression Regulation; Humans; Intercellular Adhesion Molecule-1; Interleukin-1beta; Lipopolysaccharides; Macrophages; Mice; Mice, Knockout; Mitochondria; Monocytes | 2019 |
CYP2C8-derived epoxyeicosatrienoic acids decrease oxidative stress-induced endothelial apoptosis in development of atherosclerosis: Role of Nrf2 activation.
The aim of the present study is to investigate how cytochrome P450 enzymes (CYP) 2C8-derived epoxyeicosatrienoic acids (EETs) regulate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and protect against oxidative stress-induced endothelial injuries in the development and progression of atherosclerosis. In this study, cultured human umbilical vein endothelial cells (HUVECs) were transfected with CYP2C8 or pretreated with exogenous EETs (1 μmol/L) before TNF-α (20 ng/mL) stimulation. Apoptosis and intracellular ROS production were determined by flow cytometry. The expression levels of ROS-associated NAD(P)H subunits gp91 and p47, the anti-oxidative enzyme catalase (CAT), Nrf2, heme oxygenase-1 (HO-1) and endothelial nitric oxide synthase (eNOS) were detected by Western blotting. The results showed that CYP2C8-derived EETs decreased apoptosis of HUVECs treated with TNF-α. Pretreatment with 11, 12-EET also significantly blocked TNF-α-induced ROS production. In addition, 11, 12-EET decreased oxidative stress-induced apoptosis. Furthermore, the ability of 11, 12-EET to protect cells against TNF-α-induced apoptosis via oxidative stress was abrogated by transient transfection with Nrf2-specific small interfering RNA (siRNA). In conclusion, CYP2C8-derived EETs prevented TNF-α-induced HUVECs apoptosis via inhibition of oxidative stress associated with the Nrf2 signaling. Topics: 8,11,14-Eicosatrienoic Acid; Adaptor Proteins, Signal Transducing; Apoptosis; Aryl Hydrocarbon Hydroxylases; Atherosclerosis; Catalase; Cytochrome P-450 CYP2C8; Gene Expression Regulation; Heme Oxygenase-1; Human Umbilical Vein Endothelial Cells; Humans; Membrane Glycoproteins; Models, Biological; NADPH Oxidase 2; NADPH Oxidases; NF-E2-Related Factor 2; Nitric Oxide Synthase Type III; Reactive Oxygen Species; RNA, Small Interfering; Signal Transduction; Tumor Necrosis Factor-alpha | 2015 |
Ethnicity, plasma phospholipid fatty acid composition and inflammatory/endothelial activation biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA).
It has been recognized that certain long-chain polyunsaturated fatty acids (LC-PUFAs) are involved in inflammation and its resolution. It has also been shown that ethnicity may be a factor in affecting systemic inflammation, and limited evidence suggests it may influence plasma LC-PUFA composition. Given the links among these three factors, we aim to determine ethnicity-based differences in plasma LC-PUFA composition among White, Black, Hispanic and Chinese participants, and whether such differences contribute to variations in markers of inflammation and endothelial activation in a sub-cohort of the Multi-Ethnic Study of Atherosclerosis (MESA).. Plasma phospholipid LC-PUFAs levels (%) were determined in 2848 MESA participants using gas chromatography-flame ionization detection. Enzyme immunoassays determined inflammatory markers levels for high-sensitivity C-reactive protein (n=2848), interleukin-6 (n=2796), soluble tumor necrosis factor-α receptor type 1 (n=998), and endothelial activation markers soluble intercellular adhesion molecule-1 (n=1192) and soluble E-selectin (n=998). The modifying influence of ethnicity was tested by linear regression analysis.. Chinese adults were found to have the highest mean levels of plasma eicosapentaenoic acid (EPA, 1.24%) and docosahexaenoic acid (DHA, 4.95%), and the lowest mean levels of γ-linolenic (0.10%), dihomo-γ-linolenic (DGLA, 2.96%) and arachidonic (10.72%) acids compared with the other ethnicities (all P ≤ 0.01). In contrast, Hispanics had the lowest mean levels of plasma EPA (0.70%) and DHA (3.49%), and the highest levels of DGLA (3.59%; all P ≤ 0.01). Significant differences in EPA and DHA among ethnicities were attenuated following adjustment for dietary non-fried fish and fish oil supplementation. Ethnicity did not modify the associations of LC-PUFAs with markers of inflammation or endothelial activation (all P (interaction)>0.05).. The absence of a modifying effect of ethnicity indicates that the putative benefits of LC-PUFAs with respect to inflammation are pan-ethnic. Future longitudinal studies may elucidate the origin(s) of ethnicity-based differences in LC-PUFA composition and whether certain patterns, that is, high plasma levels of DGLA and low levels of EPA/DHA, contribute to inflammation-associated health outcomes. Topics: 8,11,14-Eicosatrienoic Acid; Aged; Arachidonic Acid; Asian People; Atherosclerosis; Biomarkers; Diet; Dietary Fats; Dietary Supplements; Docosahexaenoic Acids; Eicosapentaenoic Acid; Endothelium, Vascular; Fatty Acids, Unsaturated; Female; Humans; Inflammation; Linear Models; Male; Middle Aged; Nutritional Status; Phospholipids | 2012 |
L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice.
To determine in vivo if L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL. Injecting L-4F into apoE null mice resulted in a significant reduction in plasma levels of 15-HETE, 5-HETE, 13-HODE and 9-HODE. In contrast, plasma levels of 20-HETE were not reduced and plasma levels of 14,15-EET, which are derived from the cytochrome P450 pathway, were elevated after injection of L-4F. Injection of 13(S)-HPODE into wild-type C57BL/6J mice caused an increase in plasma levels of 13-HODE and 9-HODE and was accompanied by a significant loss in the anti-inflammatory properties of HDL. The response of atherosclerosis resistant C3H/HeJ mice to injection of 13(S)-HPODE was similar but much more blunted. Injection of L-4F at a site different from that at which the 13(S)-HPODE was injected resulted in significantly lower plasma levels of 13-HODE and 9-HODE and significantly less loss of HDL anti-inflammatory properties in both strains. i) L-4F differentially alters plasma levels of oxidized fatty acids in vivo. ii) The resistance of the C3H/HeJ strain to atherosclerosis may in part be mediated by a reduced reaction of this strain to these potent lipid oxidants. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Chromatography, Liquid; Enzyme-Linked Immunosorbent Assay; Fatty Acids; Female; Hydroxyeicosatetraenoic Acids; Injections, Subcutaneous; Linoleic Acids; Linoleic Acids, Conjugated; Lipid Peroxides; Lipoproteins, HDL; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Knockout; Oxidation-Reduction; Peptides; Species Specificity; Tandem Mass Spectrometry; Time Factors; Up-Regulation | 2010 |
[The role of modification of fatty acid composition of erythrocyte lipids in pathogenesis of arterial hypertension].
We used liquid chromatography for analysis of fatty acids (FA) in lipids of erythrocytes of patients with hypertensive disease (HD) with normo- (group 1) and hyperlipidemia (group 2). Abnormalities of FA composition of erythrocyte lipids were revealed in both groups. In group 1 we found deficit of polyenic acids of omega-6 family, accumulation of Mead acid - prostanoid precursor with pronounced vasoconstrictor and pro inflammatory properties. In group 2 we noted more profound rearrangement of lipid matrix of erythrocyte membrane manifested as deficiency of omega-3 polyenic acids, accumulation of palmitinic and arachidonic acids. Preponderance of saturated FA in erythrocytes and deficiency of polyenic acids might evidence for pathology of their ligand-receptor transport into the cell. Blockade of active FA transport initiates formation of HD, promotes accumulation of atherogenic fractions of lipoproteins in blood. These results evidence for important pathogenetic role of FA in development of hypertension. Topics: 8,11,14-Eicosatrienoic Acid; Arachidonic Acid; Atherosclerosis; Biological Transport, Active; Carbon-Carbon Double Bond Isomerases; Chromatography, Gas; Erythrocyte Membrane; Female; Humans; Hyperlipidemias; Hypertension; Inflammation Mediators; Lipoproteins; Male; Middle Aged; Palmitic Acid; Vasoconstriction | 2010 |
Anti-atherosclerotic effects of dihomo-gamma-linolenic acid in ApoE-deficient mice.
Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid that is mainly metabolized to an anti-inflammatory eicosanoid, prostaglandin (PG) E1, via the cyclooxygenase (COX) pathway. We evaluated the effect of DGLA on atherosclerosis in apoE-deficient mice and studied the mechanism of the anti-atherosclerotic effect.. ApoE-deficient mice were fed a normal diet supplemented with 0.5% DGLA or vehicle for 6 months. ApoE-deficient mice were also fed a high-cholesterol diet supplemented with 0.5% DGLA or vehicle for 1 month. To clarify the influence of a COX inhibitor, naproxen, on the anti-atherosclerotic effect of DGLA, age-matched apoE-deficient mice fed a high-cholesterol diet supplemented with 0.5% DGLA were given oral naproxen for 1 month.. In normal diet-fed mice, acetylcholine-induced vascular relaxation was significantly greater in the DGLA group than in the vehicle group. NADPH oxidase subunits, p22phox and gp91phox, intercellular adhesion molecule-1, and vascular cellular adhesion molecule-1 were significantly lower in the DGLA group than in the vehicle group, and DGLA significantly prevented atherosclerosis. In high-cholesterol diet-fed mice, DGLA also significantly prevented atherosclerosis, but the anti-atherosclerotic effect was attenuated by naproxen.. DGLA may have an anti-atherosclerotic effect in apoE-deficient mice via PGE1 formation. Topics: 8,11,14-Eicosatrienoic Acid; Alprostadil; Animals; Apolipoproteins E; Atherosclerosis; Intercellular Adhesion Molecule-1; Mice; Mice, Knockout; NADPH Oxidases; Vascular Cell Adhesion Molecule-1; Vasodilation | 2009 |