8-11-14-eicosatrienoic-acid and Albuminuria

8-11-14-eicosatrienoic-acid has been researched along with Albuminuria* in 2 studies

Other Studies

2 other study(ies) available for 8-11-14-eicosatrienoic-acid and Albuminuria

ArticleYear
Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats.
    Journal of hypertension, 2016, Volume: 34, Issue:10

    We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension.. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined.. In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected.. The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.

    Topics: 8,11,14-Eicosatrienoic Acid; Albuminuria; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Cytochrome P-450 CYP1A1; Hypertension, Malignant; Indoles; Kidney; Male; Peptide Fragments; Rats; Rats, Transgenic; Renin; Renin-Angiotensin System; Time Factors

2016
Genetic disruption of soluble epoxide hydrolase is protective against streptozotocin-induced diabetic nephropathy.
    American journal of physiology. Endocrinology and metabolism, 2012, Sep-01, Volume: 303, Issue:5

    Cytochrome P-450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important roles in regulating cardiovascular functions. The anti-inflammatory, antiapoptotic, proangiogenic, and antihypertensive properties of EETs suggest a beneficial role for EETs in diabetic nephropathy. Endogenous EET levels are maintained by a balance between synthesis by CYP epoxygenases and hydrolysis by epoxide hydrolases into physiologically less active dihydroxyeicosatrienoic acids. Genetic disruption of soluble epoxide hydrolase (sEH/EPHX2) results in increased EET levels through decreased hydrolysis. This study investigated the effects of sEH gene disruption on diabetic nephropathy in streptozotocin-induced diabetic mice. Streptozotocin-induced diabetic manifestations were attenuated in sEH-deficient mice relative to wild-type controls, with significantly decreased levels of Hb A(1c), creatinine, and blood urea nitrogen and urinary microalbumin excretion. The sEH-deficient diabetic mice also had decreased renal tubular apoptosis that coincided with increased levels of antiapoptotic Bcl-2 and Bcl-xl, and decreased levels of the proapoptotic Bax. These effects were associated with activation of the PI3K-Akt-NOS3 and AMPK signaling cascades. sEH gene inhibition and exogenous EETs significantly protected HK-2 cells from TNFα-induced apoptosis in vitro. These findings highlight the beneficial role of the CYP epoxygenase-EETs-sEH system in the pathogenesis of diabetic nephropathy and suggest that the sEH inhibitors available may be potential therapeutic agents for this condition.

    Topics: 8,11,14-Eicosatrienoic Acid; Albuminuria; Animals; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Transformed; Cytoplasm; Diabetic Nephropathies; Disease Models, Animal; Epoxide Hydrolases; Gene Silencing; Humans; Hyperglycemia; Kidney Cortex; Kidney Tubules, Proximal; Mice; Molecular Targeted Therapy; RNA, Small Interfering; Signal Transduction; Streptozocin; Tumor Necrosis Factor-alpha

2012