7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine and Tauopathies

7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine has been researched along with Tauopathies* in 1 studies

Reviews

1 review(s) available for 7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine and Tauopathies

ArticleYear
Prions: generation and spread versus neurotoxicity.
    The Journal of biological chemistry, 2014, Jul-18, Volume: 289, Issue:29

    Neurodegenerative diseases are characterized by the aggregation of misfolded proteins in the brain. Among these disorders are the prion diseases, which are transmissible, and in which the misfolded proteins ("prions") are also the infectious agent. Increasingly, it appears that misfolded proteins in Alzheimer and Parkinson diseases and the tauopathies also propagate in a "prion-like" manner. However, the association between prion formation, spread, and neurotoxicity is not clear. Recently, we showed that in prion disease, protein misfolding leads to neurodegeneration through dysregulation of generic proteostatic mechanisms, specifically, the unfolded protein response. Genetic and pharmacological manipulation of the unfolded protein response was neuroprotective despite continuing prion replication, hence dissociating this from neurotoxicity. The data have clear implications for treatment across the spectrum of these disorders, targeting pathogenic processes downstream of protein misfolding.

    Topics: Adenine; alpha-Synuclein; Alzheimer Disease; Amyloid beta-Peptides; Animals; eIF-2 Kinase; Humans; Indoles; Neurodegenerative Diseases; Parkinson Disease; Prion Diseases; Prions; Protein Conformation; Protein Kinase Inhibitors; tau Proteins; Tauopathies; Unfolded Protein Response

2014