7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine and Leishmaniasis

7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine has been researched along with Leishmaniasis* in 1 studies

Other Studies

1 other study(ies) available for 7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2-3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2-3-d)pyrimidin-4-amine and Leishmaniasis

ArticleYear
Phosphorylation of Translation Initiation Factor 2-Alpha in Leishmania donovani under Stress Is Necessary for Parasite Survival.
    Molecular and cellular biology, 2017, 01-01, Volume: 37, Issue:1

    The transformation of Leishmania donovani from a promastigote to an amastigote during mammalian host infection displays the immense adaptability of the parasite to survival under stress. Induction of translation initiation factor 2-alpha (eIF2α) phosphorylation by stress-specific eIF2α kinases is the basic stress-perceiving signal in eukaryotes to counter stress. Here, we demonstrate that elevated temperature and acidic pH induce the phosphorylation of Leishmania donovani eIF2α (LdeIF2α). In vitro inhibition experiments suggest that interference of LdeIF2α phosphorylation under conditions of elevated temperature and acidic pH debilitates parasite differentiation and reduces parasite viability (P < 0.05). Furthermore, inhibition of LdeIF2α phosphorylation significantly reduced the infection rate (P < 0.05), emphasizing its deciding role in successful invasion and infection establishment. Notably, our findings suggested the phosphorylation of LdeIF2α under H

    Topics: Adenine; Animals; Eukaryotic Initiation Factor-2; Gene Expression Regulation; Hot Temperature; Hydrogen Peroxide; Hydrogen-Ion Concentration; Indoles; Leishmania donovani; Leishmaniasis; Life Cycle Stages; Mice; Oxidative Stress; Phosphorylation; Protozoan Proteins; Stress, Physiological

2017