7-methoxyflavone has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 7-methoxyflavone and Inflammation
Article | Year |
---|---|
7-Methoxyisoflavone suppresses vascular endothelial inflammation by inhibiting the expression of endothelial adhesion molecules.
Endothelial cells (ECs) are vital regulators of inflammatory processes, there is the potential for inhibition of EC inflammation to be a therapeutic target in chronic inflammatory diseases. This study aimed to investigate the effect of 7-methoxyisoflavone (7-Mif) on endothelial inflammation. Our results showed that 7-Mif have no cytotoxicity on HUVECs. Pretreatment with 5 μM, 10 μM and 50 μM 7-Mif significantly reduced IL-1β-induced ICAM-1 (28.1% ± 4.1%, 25.9 ± 2.5% and 32.0% ± 3.2%, respectively) and VCAM-1 (48.0% ± 5.6%, 40.1 ± 3.1% and 39.6% ± 3.1%, respectively) mRNA expression. And pretreatment with 10 μM and 50 μM 7-Mif significantly reduced IL-1β-induced ICAM-1 (45.1% ± 4.4% and 33.6 ± 4.4%, respectively) and VCAM-1 (53.0% ± 3.7% and 53.7 ± 5.1%, respectively) protein levels. Furthermore, pretreatment with 50 μM 7-Mif inhibited monocyte-endothelial cell adhesion (50.2% ± 4.2%). Mechanistically, our results showed that 7-Mif reversed IL-1β-induced NF-κB activation and p65 translocation to the nucleus, therefore inhibiting endothelial cell inflammation. In addition, we confirmed that 7-Mif 10 mg/kg and 20 mg/kg reduced LPS-induced ICAM-1 (47.3% ± 1.3% and 39.0% ± 3.2%, respectively) and VCAM-1 (56.5 ± 2.8% and 47.8 ± 4.3%, respectively) expression and attenuated inflammatory injury in mice. In conclusion, we showed the inhibitory effect of 7-Mif on endothelial inflammation by suppressing the expression of endothelial adhesion molecules and monocyte adhesion. Our data illustrated that 7-Mif could positively regulate the process of endothelial inflammation. Topics: Animals; Cell Adhesion; Cells, Cultured; Endothelial Cells; Flavones; Inflammation; Intercellular Adhesion Molecule-1; Lipopolysaccharides; Mice; NF-kappa B; RNA, Messenger; Vascular Cell Adhesion Molecule-1 | 2022 |
7-methoxyflavanone alleviates neuroinflammation in lipopolysaccharide-stimulated microglial cells by inhibiting TLR4/MyD88/MAPK signalling and activating the Nrf2/NQO-1 pathway.
Neuroprotective potential of 7-methoxyflavanone (7MF) and its underlying mechanism was investigated.. Inhibitory effects of 7MF on microglial activation and neuroinflammation were evaluated by employment of lipopolysaccharide (LPS)-induced BV2 microglial cells. Changes in expression of genes and proteins of interest were investigated by RT-qPCR analysis and Western blot analysis. Inhibitory effects of 7MF on microglial overactivation were verified in LPS-treated C57BL/6J mice using ionized calcium-binding adaptor molecule-1 (Iba1) in the brain and interleukin-6 (IL-6) in serum as indicators.. In BV2 cells, pretreatment with 7MF antagonized LPS-induced production of inflammatory factors IL-6, tumour necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). Mechanistic studies revealed reduced expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88), phosphorylated forms of c-Jun N-terminal kinase (p-JNK) and extracellular signal-regulated kinases 1/2 (p-ERK) but increased nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and cellular expression of NAD(P)H quinone dehydrogenase-1 (NQO-1) by 7MF. In LPS-treated mice, pretreatment with 7MF reduced the brain level of Iba1 and serum level of IL-6.. 7-methoxyflavanone inhibited LPS-stimulated TLR4/MyD88/MAPK signalling and activated Nrf2-mediated transcription of antioxidant protein NQO-1, showing antineuroinflammatory effect, so it is a potential neuroprotective agent. Topics: Animals; Cell Line; Cell Survival; Cyclooxygenase 2; Extracellular Signal-Regulated MAP Kinases; Flavanones; Flavones; Inflammation; Inflammation Mediators; Interleukin-6; JNK Mitogen-Activated Protein Kinases; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Microglia; Mitogen-Activated Protein Kinase 3; Myeloid Differentiation Factor 88; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; NF-kappa B; Nitric Oxide Synthase Type II; Phosphorylation; Signal Transduction; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2020 |