7-hydroxy-6-4--dimethoxyisoflavone has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 7-hydroxy-6-4--dimethoxyisoflavone and Inflammation
Article | Year |
---|---|
Afrormosin, an Isoflavonoid from Amburana cearensis A. C. Smith, Modulates the Inflammatory Response of Stimulated Human Neutrophils.
Isoflavones are phytoestrogens known by their anti-inflammatory, antioxidant and immunomodulatory properties. Presently, there is no information on whether afrormosin, an isoflavone from Amburana cearensis A.C. Smith (Fabaceae), has some effect on the inflammatory response from stimulated human neutrophils. Thus, the aim of this study was to evaluate the anti-inflammatory and antioxidant potentials of afrormosin on human neutrophils. Neutrophils (2.5 × 10(6) cells/mL) were incubated with afrormosin (3.35-335.2 μM) prepared from a product isolated from Amburana cearensis A.C. Smith with a 78.5% degree of purity and stimulated by the addition of cytochalasin B and N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate-13-acetate (PMA). Afrormosin inhibited the neutrophil degranulation induced by fMLP (10.47-335.2 μM) or PMA (0.33-167.6 μM), myeloperoxidase activity (3.3-335.2 μM), TNF-α secretion (16.7-335.2 μM) and the reactive oxygen species (ROS) generation (16.7-335.2 μM). On the other hand, afrormosin did not show any effect either on elastase or as a free radical scavenger. These data suggest that afrormosin modulates intermediary steps of the neutrophil ROS generation process. In addition, the modulatory effect of afrormosin on human neutrophil degranulation seems to be directed towards PMA-induced activation, indicating a potent inhibition of the protein kinase C activity. This study provided evidence, for the first time, to support the anti-inflammatory and antioxidant activities of afrormosin, creating novel insights into the pharmacological actions of this natural isoflavone. Topics: Adult; Antioxidants; Cell Degranulation; Fabaceae; Humans; Inflammation; Inflammation Mediators; Isoflavones; Neutrophils; Pancreatic Elastase; Peroxidase; Reactive Oxygen Species; Tumor Necrosis Factor-alpha | 2013 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |