7-hydroxy-2-n-n-dipropylaminotetralin--(r)-isomer has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for 7-hydroxy-2-n-n-dipropylaminotetralin--(r)-isomer and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch. Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries | 2019 |
Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson's disease animal models.
Here we report structure-activity relationship study of a novel hybrid series of compounds where structural alteration of aromatic hydrophobic moieties connected to the piperazine ring and bioisosteric replacement of the aromatic tetralin moieties were carried out. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptors with tritiated spiperone to evaluate inhibition constants (K(i)). Functional activity of selected compounds in stimulating GTPgammaS binding was assessed with CHO cells expressing human D2 receptors and AtT-20 cells expressing human D3 receptors. SAR results identified compound (-)-24c (D-301) as one of the lead molecules with preferential agonist activity for D3 receptor (EC(50) (GTP gamma S); D3 = 0.52 nM; D2/D3 (EC(50)): 223). Compounds (-)-24b and (-)-24c exhibited potent radical scavenging activity. The two lead compounds, (-)-24b and (-)-24c, exhibited high in vivo activity in two Parkinson's disease (PD) animal models, reserpinized rat model and 6-OHDA induced unilaterally lesioned rat model. Future studies will explore potential use of these compounds in the neuroprotective therapy for PD. Topics: Animals; Antiparkinson Agents; Benzothiazoles; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; Free Radical Scavengers; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Isoquinolines; Locomotion; Mice; Parkinson Disease; Radioligand Assay; Rats; Receptors, Dopamine D2; Receptors, Dopamine D3; Reserpine; Structure-Activity Relationship; Thiazoles | 2010 |