7-8-dihydrobiopterin has been researched along with Hypertension* in 3 studies
1 review(s) available for 7-8-dihydrobiopterin and Hypertension
Article | Year |
---|---|
Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling.
Nitric oxide (NO), a key regulator of cardiovascular function, is synthesized from L-arginine and oxygen by the enzyme nitric oxide synthase (NOS). This reaction requires tetrahydrobiopterin (BH4) as a cofactor. BH4 is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GTPCH) and recycled from 7,8-dihydrobiopterin (BH2) by dihydrofolate reductase. Under conditions of low BH4 bioavailability relative to NOS or BH2, oxygen activation is "uncoupled" from L-arginine oxidation, and NOS produces superoxide (O (2) (-) ) instead of NO. NOS-derived superoxide reacts with NO to produce peroxynitrite (ONOO(-)), a highly reactive anion that rapidly oxidizes BH4 and propagates NOS uncoupling. BH4 depletion and NOS uncoupling contribute to overload-induced heart failure, hypertension, ischemia/reperfusion injury, and atrial fibrillation. L-arginine depletion, methylarginine accumulation, and S-glutathionylation of NOS also promote uncoupling. Recoupling NOS is a promising approach to treating myocardial and vascular dysfunction associated with heart failure. Topics: Animals; Biopterins; Coenzymes; Coronary Circulation; Endothelium, Vascular; Humans; Hypertension; Mice; Myocardial Reperfusion Injury; Nitric Oxide; Nitric Oxide Synthase; Superoxides | 2012 |
2 other study(ies) available for 7-8-dihydrobiopterin and Hypertension
Article | Year |
---|---|
Endothelial nitric oxide synthase impairment is restored by clofibrate treatment in an animal model of hypertension.
Adequate production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) requires eNOS coupling promoted by tetrahydrobiopterin (BH(4)). Under pathological conditions such as hypertension, BH(4) is diminished, avoiding eNOS coupling. When eNOS is "uncoupled", it yields a superoxide anion instead of NO. Peroxisome proliferator activated receptors (NR1C) are a family of nuclear receptors activated by ligand. Clofibrate, a member of a hypolipidemic class of drugs, acts by activating the alpha isoform of NR1C. To determine the participation of NR1C1 activation in BH(4) and dihydrobiopterin (BH(2)) metabolism and its implications on eNOS coupling in hypertension, we performed aortic coarctation (AoCo) at inter-renal level on male Wistar rats in order to have a hypertensive model. Rats were divided into the following groups: Sham+vehicle (Sham-V); AoCo+vehicle (AoCo-V); Sham+clofibrate (Sham-C), and AoCo+clofibrate (AoCo-C). Clofibrate (7 days) increased eNOS coupling in the AoCo-C group compared with AoCo-V. Clofibrate also recovered the BH(4):BH(2) ratio in control values and prevented the rise in superoxide anion production, lipoperoxidation, and reactive oxygen species production. In addition, clofibrate increased GTP cyclohydrolase-1 (GTPCH-1) protein expression, which is related with BH(4) recovered production. NR1C1 stimulation re-establishes eNOS coupling, apparently through recovering the BH(4):BH(2) equilibrium and diminishing oxidative stress. Both can contribute to high blood pressure attenuation in hypertension secondary to AoCo. Topics: Animals; Biopterins; Clofibrate; Disease Models, Animal; GTP Cyclohydrolase; Hypertension; Hypolipidemic Agents; Lipid Peroxidation; Male; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; PPAR alpha; Rats; Rats, Wistar; Reactive Oxygen Species; Superoxides | 2012 |
NO synthase uncoupling in the kidney of Dahl S rats: role of dihydrobiopterin.
NO synthase (NOS) can paradoxically contribute to the production of reactive oxygen species when l-arginine or the cofactor R-tetrahydrobiopterin (BH(4)) becomes limited. The present study examined whether NOS contributes to superoxide production in kidneys of hypertensive Dahl salt-sensitive (SS) rats compared with an inbred consomic control strain (SS-13(BN)) and tested the hypothesis that elevated dihydrobiopterin (BH(2)) levels are importantly involved in this process. This was assessed by determining the effects of l-nitroarginine methyl ester (l-NAME) inhibition of NOS on superoxide production and by comparing tissue concentrations of BH(4) and BH(2). A reverse-phase high-performance liquid chromatography method was applied for direct measurements of BH(4) and BH(2) using (S)-tetrahydrobiopterin as an internal standard. Superoxide concentrations were measured in vivo from medullary microdialysis fluid using dihydroethidine and in vitro using lucigenin. The results indicate the following: (1) that superoxide levels were elevated in the outer medulla of SS rats fed a 4% salt diet and could be inhibited by l-NAME. In contrast, l-NAME resulted in elevated superoxide production in consomic SS-13(BN) rats because of higher NOS activity; (2) SS rats showed a reduced ratio of BH(4)/BH(2) in the outer medulla that was driven by increased concentrations of BH(2); and (3) lower superoxide dismutase and catalase activities contributed to elevated reactive oxygen species in SS samples. Based on the shift of BH(4) to BH(2) and the observation of l-NAME inhibitable superoxide production, we conclude that NOS uncoupling occurs in the renal medulla of hypertensive SS rats fed a high-salt diet. Topics: Animals; Biopterins; Disease Models, Animal; Enzyme Inhibitors; Hypertension; Kidney; Kidney Medulla; Male; NG-Nitroarginine Methyl Ester; Oxidative Stress; Rats; Rats, Inbred Dahl; Superoxides | 2006 |