6-methylthiopurine-ribonucleoside-5--phosphate has been researched along with Neoplasms* in 2 studies
1 trial(s) available for 6-methylthiopurine-ribonucleoside-5--phosphate and Neoplasms
Article | Year |
---|---|
Phase I trial of fluorouracil modulation by N-phosphonacetyl-L-aspartate and 6-methylmercaptopurine ribonucleoside.
Inhibition of pyrimidine and purine synthesis has been demonstrated to potentiate 5-fluorouracil (5-FU) activity in preclinical models. Low-dose phosphonacetyl-L-aspartate (PALA) potentiates the incorporation of 5-FU into RNA, without detectably increasing its toxicity. 6-Methylmercaptopurine riboside (MMPR) results in inhibition of purine biosynthesis with elevation of phosphoribosyl pyrophosphate (PRPP), which in turn is believed to increase the phosphorylation and intracellular retention of 5-FU. We conducted a phase I clinical trial to determine the maximum tolerated dose of 5-FU in combination with low-dose PALA and a biochemically-optimized dose of MMPR. The regimen consisted of PALA 250 mg/m2 given on day 1, followed 24 h later by MMPR 150 mg/m2, and escalating doses of 5-FU from 1625 to 2600 mg/m2 by 24 h continuous infusion. This regimen was repeated weekly. A group of 29 patients with a diagnosis of malignant solid tumor were entered; their median performance status was 1. The dose-limiting toxicity was mucositis, while other gastrointestinal toxicity was minimal. Two patients also experienced ischemic chest pain during the 5-FU infusion. The maximum tolerated dose of 5-FU in this combination was 2600 mg/m2. Several responses were observed including a complete remission in a previously treated breast cancer patient and two partial responses in breast and colon cancer. MMPR pharmacokinetics were obtained from urine analyses in 21 patients on this trial; there was no correlation between the pharmacokinetics of MMPR and the toxicity observed. This regimen was well tolerated and phase II trials are warranted using PALA 250 mg/m2, MMPR 150 mg/m2, and 5-FU 2300 mg/m2 by continuous infusion over 24 h. Topics: Adult; Aged; Aged, 80 and over; Antimetabolites, Antineoplastic; Antineoplastic Agents; Aspartic Acid; Female; Fluorouracil; Humans; Infusions, Intravenous; Male; Middle Aged; Neoplasms; Phosphonoacetic Acid; RNA, Neoplasm; Thioinosine; Thionucleotides | 1996 |
1 other study(ies) available for 6-methylthiopurine-ribonucleoside-5--phosphate and Neoplasms
Article | Year |
---|---|
Increased sensitivity to thiopurines in methylthioadenosine phosphorylase-deleted cancers.
The thiopurines, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), are used in the treatment of leukemia. Incorporation of deoxythioguanosine nucleotides (dG(s)) into the DNA of thiopurine-treated cells causes cell death, but there is also evidence that thiopurine metabolites, particularly the 6-MP metabolite methylthioinosine monophosphate (MeTIMP), inhibit de novo purine synthesis (DNPS). The toxicity of DNPS inhibitors is influenced by methylthioadenosine phosphorylase (MTAP), a gene frequently deleted in cancers. Because the growth of MTAP-deleted tumor cells is dependent on DNPS or hypoxanthine salvage, we would predict such cells to show differential sensitivity to 6-MP and 6-TG. To test this hypothesis, sensitivity to 6-MP and 6-TG was compared in relation to MTAP status using cytotoxicity assays in two MTAP-deficient cell lines transfected to express MTAP: the T-cell acute lymphoblastic leukemic cell line, Jurkat, transfected with MTAP cDNA under the control of a tetracycline-inducible promoter, and a lung cancer cell line (A549-MTAP(-)) transfected to express MTAP constitutively (A549-MTAP(+)). Sensitivity to 6-MP or methyl mercaptopurine riboside, which is converted intracellularly to MeTIMP, was markedly higher in both cell lines under MTAP(-) conditions. Measurement of thiopurine metabolites support the hypothesis that DNPS inhibition is a major cause of cell death with 6-MP, whereas dG(s) incorporation is the main cause of cytotoxicity with 6-TG. These data suggest that thiopurines, particularly 6-MP, may be more effective in patients with deleted MTAP. Topics: Antimetabolites, Antineoplastic; Cell Line, Tumor; Drug Resistance, Neoplasm; Gene Deletion; Humans; Immunoblotting; Mercaptopurine; Neoplasms; Purine-Nucleoside Phosphorylase; Purines; Thioguanine; Thioinosine; Thionucleotides | 2011 |