6-methyl-2-(phenylethynyl)pyridine and Pain--Postoperative

6-methyl-2-(phenylethynyl)pyridine has been researched along with Pain--Postoperative* in 4 studies

Other Studies

4 other study(ies) available for 6-methyl-2-(phenylethynyl)pyridine and Pain--Postoperative

ArticleYear
Analgesic activity of metabotropic glutamate receptor 1 antagonists on spontaneous post-operative pain in rats.
    European journal of pharmacology, 2008, Feb-12, Volume: 580, Issue:3

    Activation of metabotropic glutamate (mGlu) receptors has previously been shown to play a role in inflammatory or neuropathic pain states. However, the role of mGlu type 1 receptors in post-operative pain remains to be investigated. In the present study, effects of potent and selective mGlu1 receptor antagonists A-841720, A-794282, A-794278, and A-850002 were evaluated in a skin incision-induced post-operative pain model in rats. Post-operative pain was examined 2 h following surgery using weight-bearing difference between injured and uninjured paws as a measure of spontaneous pain. In this model, A-841720, A-794282, A-794278, and A-850002 induced significant attenuation of spontaneous post-operative pain behavior, with ED50s of 10, 50, 50, and 65 micromol/kg i.p., respectively. Depending on the compound, significant motor side effects were also observed at 3 to 10 fold higher doses. These results support the notion that mGlu1 receptor activation plays a significant role in nociceptive transmission in post-operative pain, though motor impairment may be a limiting factor in developing mGlu1 receptor antagonists as novel analgesics.

    Topics: Analgesics, Non-Narcotic; Animals; Calcium; Cell Membrane; Cerebellum; Dimethylamines; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Exploratory Behavior; Fluorometry; Glycine; Heterocyclic Compounds, 3-Ring; Hindlimb; Male; Molecular Structure; Morphine; Pain, Postoperative; Pyridines; Pyrimidinones; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Resorcinols; Rotarod Performance Test; Thiophenes; Tritium

2008
Blockade of metabotropic glutamate receptor 5 activation inhibits mechanical hypersensitivity following abdominal surgery.
    European journal of pain (London, England), 2007, Volume: 11, Issue:6

    This study used the metabotropic glutamate 5 (mGlu5) receptor subtype-selective antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) to characterise the contribution of mGlu5 receptor activity to pain and hypersensitivity in an animal model of post-surgical pain. Adult female Wistar rats (200-250g) were anaesthetised with isoflurane (2%) and underwent a midline laparotomy with gentle manipulation of the viscera, and the effects of pre- (30min) or post- (5h) operative treatment with MPEP (1, 3 or 10mgkg(-1); i.p.) or drug-vehicle on hindpaw withdrawal latency (in seconds) to thermal stimulation (Hargreave's Test) and response threshold (in grams) to mechanical stimulation (using a dynamic plantar aesthesiometer) were measured. Animals that underwent surgery displayed significant hypersensitivity to mechanical stimulation of the hindpaws. Hypersensitivity was maximum at 6h post-surgery (44.5+/-2.4% decrease; p<0.01 vs. anaesthesia only controls) and persisted for 48h. Surgery had no effect on thermal withdrawal latency. Both pre-operative and post-operative administration of 10mgkg(-1)MPEP blocked mechanical hypersensitivity induced by surgery (p<0.01 vs. vehicle treatment). MPEP had no effect on acute nociceptive thresholds in naïve animals. These data suggest that activity at mGlu5 receptors contributes to development of pain and hypersensitivity following surgery.

    Topics: Afferent Pathways; Animals; Disease Models, Animal; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Hyperalgesia; Laparotomy; Neurons, Afferent; Nociceptors; Pain Measurement; Pain Threshold; Pain, Postoperative; Presynaptic Terminals; Pyridines; Rats; Rats, Wistar; Reaction Time; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Synaptic Transmission

2007
Role of central and peripheral mGluR5 receptors in post-operative pain in rats.
    Pain, 2005, Volume: 114, Issue:1-2

    Metabotropic glutamate receptors (mGluRs) have previously been shown to play a role in pain transmission during inflammatory or neuropathic pain states. However, the role of mGluR5 in post-operative pain remains to be fully investigated. The present study was conducted to characterize analgesic activity of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) in the skin-incision-induced post-operative pain model in rats. MPEP is a potent and selective mGluR5 antagonist with high affinity (K(i)=6.3+/-0.9 nM) in rat cortex using [(3)H]-MPEP as a radioligand, while not competing with the mGluR1-selective radioligand [(3)H]-R214127 (K(i)>10,000 nM) in rat cerebellum. Post-operative pain was examined 2 h following surgery using weight-bearing (WB) difference between injured and uninjured paws as a measure of non-evoked pain. In this model, MPEP, as morphine, showed dose-dependent effects and full efficacy after systemic administration (ED(50)=15 mg/kg, i.p. for MPEP, ED(50)=1.3 mg/kg, s.c. for morphine). In addition, intrathecal (i.t.) and intracerebroventricular (i.c.v.) MPEP reduced WB difference (ED(50)=65 microg/rat i.t. and ED(50)=200 microg/rat i.c.v.). Interestingly, intraplantar (i.pl.) injection of MPEP either before or after surgery induced a similar reduction in WB difference (ED(50)=90 microg/rat, i.pl.) while contralateral i.pl. MPEP injection did not produce any effect. These results demonstrate that both peripheral and central mGluR5 receptors play a role in nociceptive transmission observed during post-operative pain. In addition, the data suggest that mGluR5 antagonists could offer a new therapeutic approach to the treatment of post-operative pain.

    Topics: Animals; Dose-Response Relationship, Drug; Male; Morphine; Pain, Postoperative; Protein Binding; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate

2005
Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities.
    European journal of pharmacology, 2004, Dec-15, Volume: 506, Issue:2

    Preclinical data, performed in a limited number of pain models, suggest that functional blockade of metabotropic glutamate (mGlu) receptors may be beneficial for pain management. In the present study, effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective mGlu5 receptor antagonist, were examined in a wide variety of rodent nociceptive and hypersensitivity models in order to fully characterize the potential analgesic profile of mGlu5 receptor blockade. Effects of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), as potent and selective as MPEP at mGlu5/mGlu1 receptors but more selective than MPEP at N-methyl-aspartate (NMDA) receptors, were also evaluated in selected nociceptive and side effect models. MPEP (3-30 mg/kg, i.p.) produced a dose-dependent reversal of thermal and mechanical hyperalgesia following complete Freund's adjuvant (CFA)-induced inflammatory hypersensitivity. Additionally, MPEP (3-30 mg/kg, i.p.) decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersensitivity without affecting paw edema, abolished acetic acid-induced writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hyperalgesia observed in a model of post-operative hypersensitivity and formalin-induced spontaneous pain. Furthermore, at 30 mg/kg, i.p., MPEP significantly attenuated mechanical allodynia observed in three neuropathic pain models, i.e. spinal nerve ligation, sciatic nerve constriction and vincristine-induced neuropathic pain. MTEP (3-30 mg/kg, i.p.) also potently reduced CFA-induced thermal hyperalgesia. However, at 100 mg/kg, i.p., MPEP and MTEP produced central nerve system (CNS) side effects as measured by rotarod performance and exploratory locomotor activity. These results suggest a role for mGlu5 receptors in multiple nociceptive modalities, though CNS side effects may be a limiting factor in developing mGlu5 receptor analgesic compounds.

    Topics: Acetic Acid; Animals; Carrageenan; Central Nervous System; Constriction, Pathologic; Edema; Formaldehyde; Hyperalgesia; Male; Mice; Mice, Inbred ICR; Motor Activity; Pain; Pain Measurement; Pain, Postoperative; Psychomotor Performance; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Spinal Nerves; Thiazoles; Vincristine

2004