6-methyl-2-(phenylethynyl)pyridine and Neurodegenerative-Diseases

6-methyl-2-(phenylethynyl)pyridine has been researched along with Neurodegenerative-Diseases* in 3 studies

Reviews

1 review(s) available for 6-methyl-2-(phenylethynyl)pyridine and Neurodegenerative-Diseases

ArticleYear
Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP.
    CNS drug reviews, 2006,Summer, Volume: 12, Issue:2

    Glutamate regulates the function of central nervous system (CNS), in part, through the cAMP and/or IP3/DAG second messenger-associated metabotropic glutamate receptors (mGluRs). The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) has been extensively used to elucidate potential physiological and pathophysiological functions of mGluR5. Unfortunately, recent evidence indicates significant non-specific actions of MPEP, including inhibition of NMDA receptors. In contrast, in vivo and in vitro characterization of the newer mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) indicates that it is more highly selective for mGluR5 over mGluR1, has no effect on other mGluR subtypes, and has fewer off-target effects than MPEP. This article reviews literature on both of these mGluR5 antagonists, which suggests their possible utility in neurodegeneration, addiction, anxiety and pain management.

    Topics: Animals; Humans; Neurodegenerative Diseases; Pain; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Substance-Related Disorders; Thiazoles

2006

Other Studies

2 other study(ies) available for 6-methyl-2-(phenylethynyl)pyridine and Neurodegenerative-Diseases

ArticleYear
Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson's disease rat model.
    Pharmacology, biochemistry, and behavior, 2012, Volume: 102, Issue:1

    Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD). Metabotropic glutamate receptor subtype 5 (mGluR5) modulates glutamatergic transmission and thus has been proposed as a potential target for neuroprotective drugs. The aim of this study was to determine the effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an mGluR5 antagonist, on working memory, object recognition, and neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. Male Wistar rats were stereotaxically injected with MPTP into the substantia nigra pars compacta (SNc). Starting 1 day after lesioning (day 1), the rats were treated daily with MPEP (2mg/kg/day, i.p.) for 14 days and rats underwent a T-maze test on days 8-10 and an object recognition test on days 12-14. MPTP-lesioned rats showed impairments of working memory in the T-maze test and of recognition function in the object recognition test and both effects were prevented by MPEP treatment. Furthermore, MPTP lesion-induced dopaminergic degeneration in the nigrostriatal system, microglial activation in the SNc, and cell loss in the hippocampal CA1 area were all inhibited by MPEP treatment. These data provide support for a role of mGluR5s in the pathophysiology of PD and suggest that MPEP is a promising pharmacological tool for the development of new treatments for dementia associated with PD.

    Topics: Animals; Cognition Disorders; Disease Models, Animal; Male; Neurodegenerative Diseases; Parkinsonian Disorders; Pyridines; Random Allocation; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate

2012
Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity.
    PloS one, 2010, Nov-16, Volume: 5, Issue:11

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn). Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR), particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg) mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the therapeutic importance of mGluR5 antagonists in alpha-synucleinopathies.

    Topics: Aged; Aged, 80 and over; alpha-Synuclein; Animals; Autopsy; Brain; Excitatory Amino Acid Antagonists; Female; Humans; Immunoblotting; Immunohistochemistry; Lewy Body Disease; Male; Memory Disorders; Mice; Mice, Transgenic; Motor Activity; Neurodegenerative Diseases; Parkinson Disease; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Signal Transduction

2010