6-ketoprostaglandin-f1-alpha has been researched along with Rhinitis* in 2 studies
2 other study(ies) available for 6-ketoprostaglandin-f1-alpha and Rhinitis
Article | Year |
---|---|
Cyclooxygenase and lipoxygenase metabolite generation in nasal polyps.
A role of prostaglandins (PGs) and leukotrienes (LTs) in the pathogenesis of nasal polyps has been recently suggested. Cyclooxygenase (CO) products (thromboxane B2, PGE2 and 6-keto PGF1 alpha) and lipoxygenase (LO) products (LTB4 and LTC4) were investigated by radioimmunoassay in polyps, hypertrophic turbinates and nasal mucosa from 14 patients with non-allergic (n = 6), allergic chronic rhinitis (n = 6) and aspirin-sensitive asthma (ASA) (n = 2), who underwent polypectomy. In all tissues CO metabolite levels were found higher than LO products (P < 0.01). Nasal polyps showed a significantly lower (P < 0.05) arachidonic acid (AA) metabolism in comparison to nasal mucosa. In polyps of allergic patients significantly higher LTB4 levels (P < 0.001) and a tendency to produce higher amounts of CO products in comparison to non-allergic subjects were observed, whereas in turbinates of non-allergic patients LT levels were significantly higher in comparison to those of allergic ones (P < 0.01). In ASA patients a decreased CO/LO ratio was found supporting the hypothesis of an imbalance of AA metabolism in this syndrome. These findings seem to indicate that the occurrence of nasal polyps may represent the result of different chronic inflammatory stimuli, regulated in part by AA metabolites. Topics: 6-Ketoprostaglandin F1 alpha; Adult; Arachidonic Acid; Asthma; Dinoprostone; Humans; Leukotriene B4; Leukotriene C4; Lipoxygenase; Middle Aged; Nasal Mucosa; Nasal Polyps; Prostaglandin-Endoperoxide Synthases; Rhinitis; Thromboxane B2; Turbinates | 1997 |
Arachidonic acid metabolites in human nasal polyps.
Arachidonic acid metabolites (AAMs) are known to be involved in inflammation. It is suggested that AAMs play an important role in the pathogenesis of nasal polyp. We have measured the levels of prostaglandin E2, 6-keto prostaglandin F1 alpha, thromboxane B2, leukotriene B4 and a mixture of leukotriene C4, D4 and E4 in both nasal polyp and maxillary sinus mucosa by radioimmunoassay. Our results showed that arachidonic acid metabolism in nasal polyps from allergic patients was more active than that from non-allergic patients. The arachidonic acid metabolism in nasal polyp was more active than in maxillary sinus mucosa among allergic patients. On the other hand, arachidonic acid metabolism in maxillary sinus mucosa was more active than that in nasal polyps among non-allergic patients. On the basis of these results, we hypothesized the causal mechanisms of nasal polyps as follows: The nasal polyp in allergic patients is caused by primary inflammation of the nasal mucosa, and sinusitis occurs secondarily. In non-allergic patients, the primary side of inflammation is located in the maxillary sinus mucosa, leading to the secondary formation of nasal polyp. Topics: 6-Ketoprostaglandin F1 alpha; Adolescent; Adult; Arachidonic Acids; Child; Dinoprostone; Female; Humans; Leukotriene B4; Leukotriene E4; Male; Maxillary Sinus; Middle Aged; Mucous Membrane; Nasal Polyps; Respiratory Hypersensitivity; Rhinitis; SRS-A; Thromboxane B2 | 1993 |