6-ketoprostaglandin-f1-alpha has been researched along with Alkalosis* in 2 studies
2 other study(ies) available for 6-ketoprostaglandin-f1-alpha and Alkalosis
Article | Year |
---|---|
Prostacyclin contributes to inhibition of hypoxic pulmonary vasoconstriction by alkalosis.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3-induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), an hydrolysis product of PGI2. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF1 alpha. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF1 alpha were increased by both hypocapnic and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2. Topics: 6-Ketoprostaglandin F1 alpha; Alkalosis; Animals; Bicarbonates; Bradykinin; Carbon Dioxide; Cells, Cultured; Dogs; Endothelium, Vascular; Epoprostenol; Hypoxia; Male; Muscle, Smooth, Vascular; Oxygen; Pulmonary Artery; Rats; Sodium; Sodium Bicarbonate; Vasoconstriction | 1989 |
Hyperventilation, alkalosis, prostaglandins, and pulmonary circulation of the newborn.
This study was designed to determine whether the effects of hyperventilation on the pulmonary circulation of the newborn lamb were 1) due to mechanical factors or to respiratory alkalosis; and 2) mediated by prostaglandins. Six control lambs were studied during normal ventilation and during hyperventilation with, and without, decreased carbon dioxide (CO2). Five lambs were given indomethacin and studied similarly. In control lambs, hyperventilation with decreased CO2 decreased pulmonary arterial pressure from 26 +/- 2.2 to 18 +/- 1.0 (SE) Torr (P less than or equal to 0.005) and pulmonary vascular resistance from 0.099 +/- 0.035 to 0.070 +/- 0.011 Torr X kg-1 X min-1 (P less than or equal to 0.015). Hyperventilation with normal CO2 did not affect the pulmonary circulation. Hyperventilation with decreased CO2 increased pulmonary arterial concentrations of 6-ketoprostaglandin F1 alpha, a major metabolite of prostacyclin, in control lambs but not in the indomethacin-treated lambs. However, it affected the pulmonary circulation of the control- and indomethacin-treated lambs similarly. In conclusion, hyperventilation affected the pulmonary circulation by respiratory alkalosis not by mechanical factors and prostaglandins did not mediate its effects. Topics: 6-Ketoprostaglandin F1 alpha; Alkalosis; Animals; Animals, Newborn; Blood Pressure; Carbon Dioxide; Cardiac Output; Hyperventilation; Indomethacin; Pressure; Pulmonary Circulation; Sheep | 1986 |