6-cyano-7-nitroquinoxaline-2-3-dione and Morphine-Dependence

6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with Morphine-Dependence* in 4 studies

Other Studies

4 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and Morphine-Dependence

ArticleYear
Electrical stimulation mPFC affects morphine addiction by changing glutamate concentration in the ventral tegmental area.
    Metabolic brain disease, 2019, Volume: 34, Issue:4

    Morphine addiction is known as a serious social problem. Medial prefrontal cortex (mPFC) and ventral tegmental area (VTA) are two important sites of the brain that contribute to this type of addiction, and a complicated relation exists in between. In addition, neurotransmitters like glutamate and γ--Amino Butyric Acid (GABA) play an important role in the formation of these relations. Thus, the present study was undertaken to investigate these relations by evaluating the level of associated changes in the indicated neurotransmitters in the VTA, using HPLC method. This was performed after electrical stimulation and inducing lesion of mPFC and through microinjections of N-Methyl-D-Aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, respectively AP5 and CNQX, into the VTA of addicted rats. Our results showed that intra-peritoneal (i.p.) administration of morphine in 9 days in the morphine group, and also electrical stimulation (100 μA) of mPFC, receiving (i.p.) morphine, caused an increase in the glutamate release in the VTA, compared to the control group, but the increase of glutamate levels in the VTA in the morphine-stimulation group was not significant, compared to the morphine group. Moreover, GABA release into this area was decreasing in morphine and morphine- stimulation groups, compared to the control group. Our findings also showed that electrical lesion (0.4 mA) of mPFC, and also microinjection of glutamate antagonists into the VTA, receiving (i.p.) morphine in rats, caused a decrease of glutamate in the VTA. Therefore, it could be concluded that the relation between mPFC and VTA is highly effective in the formation of reward system.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Electric Stimulation; Excitatory Amino Acid Antagonists; Glutamic Acid; Male; Morphine; Morphine Dependence; Narcotics; Prefrontal Cortex; Rats; Rats, Wistar; Valine; Ventral Tegmental Area

2019
Involvement of glutamate receptors within the central nucleus of the amygdala in naloxone-precipitated morphine withdrawal-induced conditioned place aversion in rats.
    Japanese journal of pharmacology, 2002, Volume: 88, Issue:4

    Chronic use of morphine leads to physical and psychological dependence. The amygdala is known to be involved in the expression of emotion such as anxiety and fear, and several studies have shown that the central nucleus of the amygdala (CeA) is involved in morphine dependence. In the present study, we investigated the role of glutamate receptors within the CeA in the negative affective component of morphine abstinence by evaluating naloxone-precipitated withdrawal-induced conditioned place aversion (CPA) in morphine-dependent rats. We found that microinjection of the AMPA/kainate-glutamate-receptor antagonist CNQX (30 nmol/side) into the bilateral CeA significantly attenuated the naloxone-precipitated withdrawal-induced CPA, as well as several somatic signs, in morphine-dependent rats, without preference or aversive effects by itself in non-dependent rats. Furthermore, microinjection of the non-competitive NMDA-receptor antagonist MK-801 (30 nmol/side) or competitive NMDA-receptor antagonist D-CPPene (0.01 and 0.1 nmol/side) into the CeA significantly attenuated the naloxone-precipitated morphine withdrawal-induced CPA, but not somatic withdrawal signs. These results suggest that the activation of AMPA /kainate and NMDA receptors within the CeA play a crucial role in the negative affective component of morphine abstinence.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Analysis of Variance; Animals; Avoidance Learning; Cerebellar Nuclei; Conditioning, Psychological; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Male; Microinjections; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Narcotics; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Substance Withdrawal Syndrome

2002
Local opiate withdrawal in locus coeruleus neurons in vitro.
    Journal of neurophysiology, 2001, Volume: 85, Issue:6

    Noradrenergic neurons of the brain nucleus locus coeruleus (LC) become hyperactive during opiate withdrawal. It has been uncertain to what extent such hyperactivity reflects changes in intrinsic properties of these cells. The effects of withdrawal from chronic morphine on the activity of LC neurons were studied using intracellular recordings in rat brain slices. LC neurons in slices from chronically morphine-treated rats exhibited more than twice the frequency of spontaneous action potentials after naloxone compared with LC neurons from control rats. However, after naloxone treatment, the resting membrane potential (MP) of LC neurons from dependent rats was not significantly different from that in control rats. Neither resting MP nor spontaneous discharge rate (SDR) was altered by naloxone in LC neurons from control rats. Neither kynurenic acid nor a cocktail of glutamate and GABA antagonists (6-cyano-7-nitroquinoxalene-2,3-dione + 2-amino-5-phosphonopentanoic acid + bicuculline) blocked the hyperactivity of LC neurons precipitated by naloxone in slices from morphine-dependent rats. The effects of ouabain on MP and SDR were similar in LC neurons from control and morphine-dependent rats. These results indicate that an adaptive change in glutamatergic or GABAergic synaptic mechanisms or altered Na/K pump activity does not underlie the withdrawal-induced activation of LC neurons in vitro. Specific inhibitors of protein kinase A [Rp-cAMPS or N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H-89)] partially suppressed the withdrawal hyperactivity of LC neurons, and activators of cAMP (forskolin) or protein kinase A (Sp-cAMPS) increased the discharge rate of LC neurons from control rats. These results suggest that upregulation of cAMP-dependent protein kinase A during chronic morphine treatment is involved in the withdrawal-induced hyperactivity of LC neurons.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Barium; Bicuculline; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; In Vitro Techniques; Kynurenic Acid; Locus Coeruleus; Male; Membrane Potentials; Morphine; Morphine Dependence; Naloxone; Narcotic Antagonists; Neurons; Ouabain; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Tetrodotoxin; Thionucleotides

2001
A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat.
    Psychopharmacology, 1998, Volume: 138, Issue:2

    Both the locus coeruleus (LC) and the amygdala have been implicated in aspects of opiate dependence and withdrawal. The LC is known to be one of the most sensitive sites for precipitating withdrawal behaviors after local opiate antagonist infusions in morphine-dependent subjects. The amygdala is also known to mediate antagonist-induced withdrawal behaviors and aversive motivational states. The goal of the present study was to evaluate directly the ability of noradrenergic agonists and glutamatergic antagonists to attenuate naloxone-precipitated withdrawal behaviors when infused into the LC or the central nucleus of the amygdala (CeA). The alpha-2-noradrenergic agonists clonidine or ST-91 were infused into the CeA to compare the effects of noradrenergic activation in the CeA to the attenuation of withdrawal previously observed in rats infused with clonidine into the LC, since the LC and CeA are known to contain co-localized opiate and noradrenergic receptors. The effects of microinfusions of the non-NMDA excitatory amino acid antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) were also infused into the LC and CeA since opiate withdrawal is associated with increased glutamatergic transmission. Intra-CeA clonidine or ST-91 (2.4 microg/0.5 microl or 1.0 microl) produced significant reductions primarily in the occurrence of irritability. Conversely, intra-CeA or intra-LC infusions of CNQX (2.5 microg/0.5 microl) significantly attenuated naloxone-precipitated withdrawal, an effect similar to the attenuation previously observed after intra-LC clonidine infusions. These data demonstrate the specific behavioral effects of altering glutamatergic and noradrenergic neurotransmission in the LC or CeA during naloxone-precipitated opiate withdrawal. Elucidation of the neuroanatomical circuitry involved in opiate withdrawal should increase our understanding of the neuroadaptations associated with drug dependence and subsequent withdrawal behavior.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adrenergic alpha-Agonists; Amygdala; Animals; Clonidine; Excitatory Amino Acid Antagonists; Glutamic Acid; Glutamine; Locus Coeruleus; Male; Morphine Dependence; N-Methylaspartate; Naloxone; Narcotic Antagonists; Norepinephrine; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome

1998