6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with Learning-Disabilities* in 4 studies
4 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and Learning-Disabilities
Article | Year |
---|---|
Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8.
Senescence-accelerated mouse (SAM) is an experimental model animal showing a short lifespan and rapid advancement of senescence. Especially, SAM prone 8 (SAMP8) shows age-related impairment of learning and memory, and thus, it is a good model for age-related cognitive function. However, the synaptic characteristics related to cognitive function of SAMP8 have been poorly understood. In this study, we quantitatively evaluated the synaptic transmission and synaptic plasticity using hippocampal slices obtained from SAMP8 with electrophysiological methods to elucidate the synaptic features of SAMP8. We used the field recordings to measure some synaptic parameters. The slope of field excitatory postsynaptic potentials decreased with age in both SAMP8 and SAM resistant 1 (SAMR1), the control strain of SAMP8. The paired-pulse ratio (PPR), a representative of short-term synaptic plasticity, also decreased in both strains with age. On the other hand, although both SAMR1 and SAMP8 exhibited age-dependent decrease in long-term potentiation (LTP), a representative of long-term synaptic plasticity, the decrease in LTP in SAMP8 started at 6 months of age, while in SAMR1, it was observed at 14 months but not at 6 months of age. The PPRs after high-frequency stimulation for LTP induction were smaller than those before the stimulation. These results indicate that synaptic plasticity in SAMP8 deteriorates at an earlier age compared to SAMR1, and are consistent with behavioral tests showing early impairment of learning and memory of SAMP8. Our study is the first report on quantitative analysis of synaptic function at SAMP8 hippocampus and corroborates the behavioral studies showing cognitive dysfunction with age; therefore, it will be helpful for future studies on aging. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; Aging; Animals; Biophysics; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Learning Disabilities; Long-Term Potentiation; Mice; Patch-Clamp Techniques | 2015 |
AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord.
Previous research has demonstrated that the spinal cord is capable of a simple form of instrumental learning. Spinally transected rats that receive shock to a hind leg in an extended position quickly learn to maintain the leg in a flexed position, reducing net shock exposure whenever that leg is flexed. Subjects that receive shock independent of leg position (uncontrollable shock) do not exhibit an increase in flexion duration and later fail to learn when tested with controllable shock (learning deficit). The present study examined the role of the ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in spinal learning. Intrathecal application of the AMPA receptor antagonist CNQX disrupted performance of a spinal instrumental learning in a dose dependent fashion (Experiment 1). CNQX also disrupted the maintenance of the instrumental response (Experiment 2) and blocked the induction of the learning deficit (Experiment 3). Intrathecal application of the agonist AMPA had a non-monotonic effect, producing a slight facilitation of performance at a low dose and disrupting learning at a high concentration (Experiment 4). Within the dose range tested, intrathecal application of AMPA did not have a long-term effect (Experiment 5). The results suggest that AMPA-mediated transmission plays an essential role in both instrumental learning and the induction of the learning deficit. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Avoidance Learning; Behavior, Animal; Conditioning, Operant; Dose-Response Relationship, Drug; Electroshock; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; In Vitro Techniques; Learning; Learning Disabilities; Neuronal Plasticity; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Spinal Cord | 2013 |
Altered dendritic integration in hippocampal granule cells of spatial learning-impaired aged rats.
Glutamatergic transmission at central synapses undergoes activity-dependent and developmental changes. In the hippocampal dentate gyrus, the non-N-methyl d-aspartate (NMDA) receptor component of field excitatory postsynaptic potentials (fEPSPs) increases with age in Fischer-344 rats. This effect may not depend on the animal's activity or experience but could be part of the developmental process. Age-dependent differences in synaptic transmission at the perforant path-granule cell synapse may be caused by changes in non-NMDA and NMDA receptor-mediated currents. To test this hypothesis, we compared whole cell excitatory postsynaptic currents (EPSCs) in dentate granule cells evoked by perforant path stimulation in young (3-4 mo) and aged (22-27 mo) Fischer-344 rats using a Cs+-based intracellular solution. Aged animals as a group showed spatial learning and memory deficits in the Morris water maze. Using whole cell recordings, slope conductances of both non-NMDA and NMDA EPSCs at holding potentials -10 to +50 mV were significantly reduced in aged animals and the non-NMDA/NMDA ratio in aged animals was found to be significantly smaller than in young animals. In contrast, we detected no differences in basic electrophysiological parameters, or absolute amplitudes of non-NMDA and NMDA EPSCs. Extracellular Cs+ increased the fEPSP in young slices to a greater degree than was found in the aged slices, while it increased population spikes to a greater degree in the aged rats. Our results not only provide evidence for reduced glutamatergic synaptic responses in Fischer-344 rats but also point to differential changes in Cs+-sensitive dendritic conductances, such as Ih or inwardly rectifying potassium currents, during aging. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Analysis of Variance; Animals; Behavior, Animal; Dendrites; Dose-Response Relationship, Radiation; Electric Stimulation; Excitatory Amino Acid Antagonists; Hippocampus; In Vitro Techniques; Learning Disabilities; Male; Maze Learning; Membrane Potentials; Neurons; Patch-Clamp Techniques; Rats; Rats, Inbred F344; Reaction Time; Space Perception; Valine | 2008 |
[The ameliorating effects of a novel NC-1900 on impairments of learning/memory caused by glutamic acid].
The effects of a novel vasopressin fragment analog NC-1900 (pGlu-Asn-Ser-Pro-Arg-Gly-NH2 acetate) were studied on learning and/or memory impairment in passive avoidance task and on cell damage of cultured cerebro-cortical neurocytes induced by glutamic acid. A small dose of NC-1900 (1 ng/kg, s.c.) ameliorated impairments of learning and/or memory induced by intracisternal injection of 467.6 micrograms of 10 microliters glutamic acid. NC-1900 also ameliorated the impairments induced by intracisternal NMDA, AMPA-antagonist CNQX and by metabotropic receptor (mGluR1) agonist 3,5-dihydroxyphenylglycine but not by kainate agonist domoic acid nor MK-801 in mice. NC-1900 (100 pM, 1nM) ameliorated the cell damage of cultured rat cerebro-cortical neurocytes induced by 100 and 1000 microM of glutamic acid. These results suggest that NC-1900 may serve as a remedies in various patients with certain brain disorders induced by excess glutamic acid. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Arginine Vasopressin; Avoidance Learning; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Kainic Acid; Learning Disabilities; Male; Memory Disorders; Mice; Mice, Inbred Strains; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oligopeptides; Pyrrolidonecarboxylic Acid; Rats; Rats, Sprague-Dawley; Resorcinols | 1999 |