6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with Hypoglycemia* in 4 studies
4 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and Hypoglycemia
Article | Year |
---|---|
Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex.
Dark neurons have plagued the interpretation of brain tissue sections, experimentally and clinically. Seen only when perturbed but living tissue is fixed in aldehydes, their mechanism of production is unknown. Since dark neurons are seen in cortical biopsies, experimental ischemia, hypoglycemia, and epilepsy, we surmised that glutamate release and neuronal transmembrane ion fluxes could be the perturbation leading to dark neuron formation while the fixation process is underway. Accordingly, we excised biopsies of rat cortex to simulate neurosurgical production of dark neurons. To ascertain the role of glutamate, blockade of N-methyl-D-aspartate (NMDA) and non-NMDA receptors was done prior to formaldehyde fixation. To assess the role of transmembrane sodium ion (and implicitly, water) fluxes, tetraethylammonium (TEA) was used. Blockade of NMDA receptors with MK-801 and non-NMDA receptors with the quinoxalinediones (CNQX and NBQX) abolished dark neuron formation. More delayed exposure of the tissue to the antagonist, CNQX, by admixing it with the fixative directly, allowed for some production of dark neurons. Aminophosphonoheptanoate (APH), perhaps due to its polarity, and TEA, did not prevent dark neurons, which were abundant in control formaldehyde fixed material unexposed to either receptor or ion channel antagonists. The results demonstrate a role for the pharmacologic subtypes of glutamate receptors in the pathogenetic mechanism of dark neuron formation. Our results are consistent with the appearance of dark neurons in biopsy where the cerebral cortex has been undercut, and rendered locally ischemic and hypoglycemic, as well as in epilepsy, hypoglycemia, and ischemia, all of which lead to glutamate release. Rather than a pressure-derived mechanical origin, we suggest that depolarization, glutamate release or receptor activation are more likely mechanisms of dark neuron production. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Artifacts; Biopsy; Brain Ischemia; Cerebral Cortex; Dizocilpine Maleate; Epilepsy; Excitatory Amino Acid Antagonists; Glutamic Acid; Hypoglycemia; Male; Neurons; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Tetraethylammonium | 2008 |
Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia.
We have investigated the relative contributions of oxygen and glucose deprivation to ischaemic neurodegeneration in organotypic hippocampal slice cultures. Cultures prepared from 10-day-old rats were maintained in vitro for 14 days and then deprived of either oxygen (hypoxia), glucose (hypoglycaemia), or both oxygen and glucose (ischaemia). Hypoxia alone induced degeneration selectively in CA1 pyramidal cells and this was greatly potentiated if glucose was removed from the medium. We have also characterised the effects of both pre- and post-treatment using glutamate receptor antagonists and the sodium channel blocker tetrodotoxin (TTX). Neuronal death following either hypoxia or ischaemia was prevented by pre-incubation with CNQX, MK-801 or tetrodotoxin. MK-801 or CNQX also prevented death induced by either hypoxia or ischaemia if added immediately post-insult, however, post-insult addition of TTX prevented hypoxic but not ischaemic damage. Organotypic hippocampal slice cultures are sensitive to both NMDA and non-NMDA glutamate receptor blockade and thus represent a useful in vitro system for the study of ischaemic neurodegeneration paralleling results reported using in vivo models of ischaemia. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Brain Ischemia; Cell Death; Excitatory Amino Acid Antagonists; Hippocampus; Hypoglycemia; Hypoxia, Brain; Neurons; Neuroprotective Agents; Organ Culture Techniques; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Sodium Channels | 1997 |
NMDA receptors, cellular edema, and metabolic stress.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Chickens; Dizocilpine Maleate; Edema; Electron Transport; Glycolysis; Hypoglycemia; Hypoxia; Iodoacetates; Iodoacetic Acid; Ischemia; N-Methylaspartate; Potassium Cyanide; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Retina; Tetrodotoxin | 1992 |
Hypoglycemic neurotoxicity in vitro: involvement of excitatory amino acid receptors and attenuation by monosialoganglioside GM1.
Rat cerebellar granule cells, when subjected to a glucose-free environment for 4 h, developed extensive degeneration of neuronal cell bodies and their associated neurite network over the following 24 h. This neuronal damage was quantitated with a colorimetric assay using the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Hypoglycemic neuronal injury could be markedly reduced by the presence of both competitive (3-(+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid) and non-competitive (phencyclidine) N-methyl-D-aspartate receptor antagonists, but not by kainate/quisqualate preferring antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. Glucose deprivation neuronal injury was also reduced by adding glutamate-degrading enzymes to the incubation medium. Monosialoganglioside GM1, but not its asialo derivative (lacking sialic acid), was also effective in protecting against hypoglycemic neurodegeneration when included during the period of glucose deprivation. These results suggest that the neuronal injury to cerebellar granule cells resulting from glucose deprivation is mediated predominantly by activation of the N-methyl-D-aspartate type of excitatory amino acid receptor, perhaps through the action of endogenously released glutamate. Furthermore, the monosialoganglioside GM1, a member of a class of naturally occurring sialoglycosphingolipids, is able to attenuate this neuronal injury--as already observed for glutamate neurotoxicity and anoxic neuronal death in cerebellar granule cells. Gangliosides may thus prove to be of therapeutic utility in excitatory amino acid-associated neuropathologies. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebellum; G(M1) Ganglioside; Gangliosides; Hypoglycemia; Nerve Degeneration; Neurons; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate | 1990 |