6-cyano-7-nitroquinoxaline-2-3-dione and Disease-Models--Animal

6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with Disease-Models--Animal* in 72 studies

Other Studies

72 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and Disease-Models--Animal

ArticleYear
Investigating the mechanism of action of ginkgolides and bilobalide on absence seizures in male WAG/Rij rats.
    Journal of neuroscience research, 2023, Volume: 101, Issue:6

    The effects of a single and multiple doses of ginkgolide A, B, C, and bilobalide, active components of Ginkgo biloba extract (EGb 761), on absence seizures were investigated in male WAG/Rij rats, a genetic animal model of absence epilepsy. Furthermore, the interactions of ginkgolide A together with NMDA receptor antagonist MK-801, AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or L-type calcium channel blocker nicardipine were studied to figure out how ginkgolide A affects spike-wave discharges (SWDs) in the brain. The experiments were done using 6-8-month-old male WAG/Rij rats with infusion cannula and EEG electrode implanted. Ginkgolide A, B, C, and bilobalide were administered intraperitoneally for 7 days at a dose of 6 mg/kg. In interaction groups, 6 μg ginkgolide A was injected intracerebroventricularly in combination with MK-801 (10 μg), CNQX (1 μg), and nicardipine (50 μg) for 7 days. EEG was recorded from animals at the baseline, first dose, and seventh dose periods for 4 h. Ginkgolide A (p = .028), C (p = .046), and bilobalide (p = .043) significantly increased the frequency of SWDs in WAG/Rij rats. Ginkgolide A injected into the lateral ventricle with MK-801 (p = .046), CNQX (p = .043), and nicardipine (p = .046) significantly increased the number of SWDs after seventh dose. Finally, the EGb 761-related increase in absence epilepsy was determined to be caused by ginkgolide A, C, and bilobalide. All three receptor antagonists/channel blockers do not inhibit the pro-absence effect of ginkgolide A. The findings revealed that ginkgolide A's pro-absence effect is mediated by brain circuits other than ionotropic glutamate receptors or L-type calcium channels.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bilobalides; Disease Models, Animal; Dizocilpine Maleate; Electroencephalography; Epilepsy, Absence; Excitatory Amino Acid Antagonists; Ginkgolides; Male; Nicardipine; Rats; Seizures

2023
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse.
    Neuropharmacology, 2018, 09-01, Volume: 139

    Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by neurodegeneration of photoreceptors. Retinal ganglion cells (RGCs) in animal models of RP exhibit an abnormally high spontaneous activity that interferes with signal processing. Blocking AMPA/Kainate receptors by bath application of CNQX decreases the spontaneous firing, suggesting that inhibiting these receptors in vivo may help maintain the function of inner retinal neurons in rd10 mice experiencing photoreceptor degeneration. To test this, rd10 mice were i.p. injected with CNQX or GYKI 52466 (an AMPA receptor antagonist) for 1-2 weeks, and examined for their retinal morphology (by immunocytochemistry), function (by MEA recordings) and visual behaviors (using a black/white box). Our data show that iGluRs were up-regulated in the inner plexiform layer (IPL) of rd10 retinas. Application of CNQX at low doses both in vitro and in vivo, attenuated the abnormal spontaneous spiking in RGCs, and increased the light-evoked response of ON RGCs, whereas GYKI 52466 had little effect. CNQX application also improved the behavioral performance. Interestingly, in vivo administration of CNQX delayed photoreceptor degeneration, evidenced by the increased cell number and restored structure. CNQX also improved the structure of bipolar cells. Together, we demonstrated that during photoreceptor degeneration, blockade of the non-NMDA iGluRs decelerates the progression of RGCs dysfunction, possibly by dual mechanisms including slowing photoreceptor degeneration and modulating signal processing within the IPL. Accordingly, this strategy may effectively extend the time window for treating RP.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Disease Models, Animal; Female; Male; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Photoreceptor Cells, Vertebrate; Receptors, Ionotropic Glutamate; Retinal Bipolar Cells; Retinal Degeneration; Retinal Ganglion Cells; Tissue Culture Techniques; Vision, Ocular

2018
Gastrin-releasing peptide facilitates glutamatergic transmission in the hippocampus and effectively prevents vascular dementia induced cognitive and synaptic plasticity deficits.
    Experimental neurology, 2017, Volume: 287, Issue:Pt 1

    Neuronal gastrin-releasing peptide (GRP) has been proved to be an important neuromodulator in the brain and involved in a variety of neurological diseases. Whether GRP could attenuate cognition impairment induced by vascular dementia (VD) in rats, and the mechanism of synaptic plasticity and GRP's action on synaptic efficiency are still poorly understood. In this study, we first investigated the effects of GRP on glutamatergic transmission with patch-clamp recording. We found that acute application of GRP enhanced the excitatory synaptic transmission in hippocampal CA1 neurons via GRPR in a presynaptic mechanism. Secondly, we examined whether exogenous GRP or its analogue neuromedin B (NMB) could prevent VD-induced cognitive deficits and the mechanism of synaptic plasticity. By using Morris water maze, long-term potentiation (LTP) recording, western blot assay and immunofluorescent staining, we verified for the first time that GRP or NMB substantially improved the spatial learning and memory abilities in VD rats, restored the impaired synaptic plasticity and was able to elevate the expression of synaptic proteins, synaptophysin (SYP) and CaMKII, which play pivotal roles in synaptic plasticity. These results suggest that the facilitatory effects of GRP on glutamate release may contribute to its long-term action on synaptic efficacy which is essential in cognitive function. Our findings present a new entry point for a better understanding of physiological function of GRP and raise the possibility that GRPR agonists might ameliorate cognitive deficits associated with neurological diseases.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Cognition Disorders; Dementia, Vascular; Disease Models, Animal; Electric Stimulation; Excitatory Postsynaptic Potentials; Gastrin-Releasing Peptide; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Maze Learning; Nerve Net; Neurokinin B; Rats; Rats, Wistar; Synaptic Transmission; Time Factors

2017
Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy.
    Experimental neurology, 2017, Volume: 289

    The intergeniculate leaflet (IGL) of the thalamus is a retinorecipient structure implicated in orchestrating circadian rhythmicity. The IGL network is highly GABAergic and consists mainly of neuropeptide Y-synthesising and enkephalinergic neurons. A high density of GFAP-immunoreactive astrocytes has been observed in the IGL, with a probable function in guarding neuronal inhibition. Interestingly, putatively enkephalinergic IGL neurons generate action potentials with an infra-slow oscillatory (ISO) pattern in vivo in urethane anesthetised Wistar rats, under light-on conditions only. Absence epilepsy (AE) is a disease characterised by spike-wave discharges present in the encephalogram, directly caused by hypersynchronous thalamo-cortical oscillations. Many pathologies connected with the arousal system, such as abnormalities in sleep architecture and an insufficient brain sleep-promoting system accompany the epileptic phenotype. We hypothesise that disturbances in the function of biological clock structures, controlling this rhythmic physiological process, may be responsible for the observed pathomechanism. To test this hypothesis, we performed an in vitro patch-clamp study on WAG/Rij rats, a well-validated genetic model of AE, in order to assess dampened GABAergic synaptic transmission in the IGL expressed as a lower IPSC amplitude and reduced sIPSC frequency. Moreover, our in vivo extracellular recordings showed higher firing rate of ISO IGL neurons with an abnormal reaction to a change in constant illumination (maintenance of rhythmic neuronal activity in darkness) in the AE model. Additional immunohistochemical experiments indicated astrogliosis in the area of the IGL, which may partially underlie the observed changes in inhibition. Altogether, the data presented here show for the first time the disinhibition of IGL neurons in a model of AE, thereby proposing the possible involvement of circadian-related brain structures in the epileptic phenotype.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; Animals; Animals, Newborn; Disease Models, Animal; Epilepsy, Absence; Excitatory Amino Acid Antagonists; GABA Agents; Geniculate Bodies; Inhibitory Postsynaptic Potentials; Male; Nerve Net; Neural Inhibition; Neuropeptide Y; Rats; Rats, Mutant Strains; Rats, Wistar; Sodium Channel Blockers; Tetrodotoxin; Valine

2017
Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex.
    Neurobiology of disease, 2016, Volume: 88

    During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO+INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8-10), one week after injury (P13-16), or in young adults (P28-30), we investigated how the neocortical network developed following these insults. No significant difference was observed between the four groups in an extracellular solution close to physiological conditions. In extracellular 8mM potassium solution, slices from the HYPO, INFL, and HYPO+INFL group were more excitable than SHAM at P8-10 and P13-16. In these two age groups, the number and frequency of spontaneous epileptiform events were significantly increased compared to SHAM. The frequency of epileptiform events was significantly reduced by the NMDA antagonist D-APV in HYPO, INFL, and HYPO+INFL, but not in SHAM, indicating a contribution of NMDA receptors to this pathophysiological activity. In addition, the AMPA/kainate receptor antagonist CNQX suppressed the remaining epileptiform activity. Electrical stimulation evoked prominent epileptiform activity in slices from HYPO, INFL and HYPO+INFL animals. Stimulation threshold to elicit epileptiform events was lower in these groups than in SHAM. Evoked events spread over larger areas and lasted longer in treated animals than in SHAM. In addition, the evoked epileptiform activity was reduced in the older (P28-30) group indicating that cortical dysfunction induced by hypoxia and inflammation was transient and compensated during early development.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Age Factors; Animals; Bicuculline; Disease Models, Animal; Excitatory Amino Acid Antagonists; Exploratory Behavior; Female; GABA-A Receptor Antagonists; Gene Expression Regulation; Hypoxia; In Vitro Techniques; Inflammation; Male; Mice; Mice, Inbred C57BL; Neurons; Potassium Chloride; Somatosensory Cortex

2016
Diminished amygdala activation and behavioral threat response following traumatic brain injury.
    Experimental neurology, 2016, Volume: 277

    Each year, approximately 3.8 million people suffer mild to moderate traumatic brain injuries (mTBI) that result in an array of neuropsychological symptoms and disorders. Despite these alarming statistics, the neurological bases of these persistent, debilitating neuropsychological symptoms are currently poorly understood. In this study we examined the effects of mTBI on the amygdala, a brain structure known to be critically involved in the processing of emotional stimuli. Seven days after lateral fluid percussion injury (LFPI), mice underwent a series of physiological and behavioral experiments to assess amygdala function. Brain-injured mice exhibited a decreased threat response in a cued fear conditioning paradigm, congruent with a decrease in amygdala excitability determined with basolateral amygdala (BLA) field excitatory post-synaptic potentials together with voltage-sensitive dye imaging (VSD). Furthermore, beyond exposing a general decrease in the excitability of the primary input of the amygdala, the lateral amygdala (LA), VSD also revealed a decrease in the relative strength or activation of internuclear amygdala circuit projections after LFPI. Thus, not only does activation of the LA require increased stimulation, but the proportion of this activation that is propagated to the primary output of the amygdala, the central amygdala, is also diminished following LFPI. Intracellular recordings revealed no changes in the intrinsic properties of BLA pyramidal neurons after LFPI. This data suggests that mild to moderate TBI has prominent effects on amygdala function and provides a potential neurological substrate for many of the neuropsychological symptoms suffered by TBI patients.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Brain Injuries; Brain Mapping; Conditioning, Psychological; Cues; Disease Models, Animal; Electric Stimulation; Escape Reaction; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Fear; Male; Mice; Mice, Inbred C57BL; Sodium Channel Blockers; Tetrodotoxin; Voltage-Sensitive Dye Imaging

2016
Primary blast injury causes cognitive impairments and hippocampal circuit alterations.
    Experimental neurology, 2016, Volume: 283, Issue:Pt A

    Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Biomechanical Phenomena; Brain Injuries; Calcium-Binding Proteins; Cognition Disorders; Disease Models, Animal; Excitatory Amino Acid Antagonists; Exploratory Behavior; Fear; Glial Fibrillary Acidic Protein; Hippocampus; Male; Maze Learning; Membrane Potentials; Mice; Mice, Inbred C57BL; Microfilament Proteins; Motor Activity; Nerve Net; Rotarod Performance Test; Time Factors

2016
Immediate and delayed treatment with gabapentin, carbamazepine and CNQX have almost similar impact on cognitive functions and behavior in the lithium-pilocarpine model in rats.
    Pharmacology, biochemistry, and behavior, 2016, Volume: 148

    In the present study, we aimed to investigate the effects of immediate and delayed treatment with intracerebroventricular (i.c.v.) gabapentin (GBP), carbamazepine (CBZ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on learning and memory, anxiety, and locomotor activity in rats with lithium-pilocarpine-induced status epilepticus (SE). SE was induced by intraperitoneal injections of 3mEq/kg LiCl followed by 45mg/kg pilocarpine 24h later. In the first series of experiments, rats were divided into four groups three hours after the onset of SE and received GBP (100μg/10μl, two times a day; i.c.v.), CBZ (200μg/10μl; i.c.v.), CNQX (25nmol/10μl; i.c.v.) or saline (10μl; i.c.v.) for 7days. Six weeks after SE, cognitive and behavioral performances were evaluated by Morris water maze, elevated plus maze, and open field tests. In the second series, rats received no treatment for six weeks following SE. On the seventh week the same treatment with the previous rats was given and six weeks later the cognitive and behavioral tests were applied. SE significantly impaired spatial learning and memory in the Morris water maze. GBP treatment improved the acqusition and memory performance. CNQX worsened the acqusition but improved the memory performance, while CBZ worsened both parameters. In the elevated plus maze, epileptic rats which received saline showed significantly lower anxiety levels with respect to the naive rats. Only CBZ led to further anxiolysis, while the other drugs had no effect. Locomotor activity significantly increased due to SE, which was augmented by GBP and CNQX. The impact of immediate and delayed treatment with these drugs on cognition and behavior seems to be quite similar.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amines; Animals; Behavior, Animal; Carbamazepine; Cognition; Cyclohexanecarboxylic Acids; Disease Models, Animal; Gabapentin; gamma-Aminobutyric Acid; Lithium; Male; Maze Learning; Motor Activity; Pilocarpine; Rats; Rats, Wistar; Status Epilepticus

2016
Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2015, Volume: 40, Issue:10

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Actins; Action Potentials; Animals; Dendrites; Disease Models, Animal; Excitatory Amino Acid Antagonists; Exploratory Behavior; GABAergic Neurons; Glutamate Decarboxylase; Hippocampus; Male; Maze Learning; Mice; Mice, Transgenic; Parvalbumins; Phenotype; Reflex, Startle; Schizophrenia; Somatostatin; Valine

2015
KCC2 function modulates in vitro ictogenesis.
    Neurobiology of disease, 2015, Volume: 79

    GABAA receptor-mediated inhibition is active and may contribute to epileptiform synchronization. The efficacy of inhibition relies on low levels of intracellular Cl(-), which are controlled by KCC2 activity. This evidence has led us to analyze with field potential recordings the effects induced by the KCC2 blockers VU0240551 (10 μM) or bumetanide (50 μM) and by the KCC2 enhancer CLP257 (100 μM) on the epileptiform discharges generated by piriform and entorhinal cortices (PC and EC, respectively) in an in vitro brain slice preparation. Ictal- and interictal-like discharges along with high-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz) were recorded from these two regions during application of 4-aminopyridine (4AP, 50 μM). Blocking KCC2 activity with either VU024055 or high doses of bumetanide abolished ictal discharge in both PC and EC; in addition, these experimental procedures decreased the interval of occurrence and duration of interictal discharges. In contrast, enhancing KCC2 activity with CLP257 increased ictal discharge duration in both regions. Finally, blocking KCC2 activity decreased the duration and amplitude of pharmacologically isolated synchronous GABAergic events whereas enhancing KCC2 activity led to an increase in their duration. Our data demonstrate that in vitro ictogenesis is abolished or facilitated by inhibiting or enhancing KCC2 activity, respectively. We propose that these effects may result from the reduction of GABAA receptor-dependent increases in extracellular K(+) that are known to rest on KCC2 function.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bumetanide; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Antagonists; K Cl- Cotransporters; Male; Rats, Sprague-Dawley; Sodium Potassium Chloride Symporter Inhibitors; Symporters; Thiazoles; Thiazolidines; Thioglycolates; Tissue Culture Techniques

2015
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, Jul-15, Volume: 35, Issue:28

    Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal.. Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Afferent Pathways; Animals; Channelrhodopsins; Disease Models, Animal; Dopaminergic Neurons; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Excitatory Amino Acid Antagonists; GABAergic Neurons; Glutamate Decarboxylase; Male; Morphine; Narcotics; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Time Factors; Valine; Ventral Tegmental Area

2015
Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8.
    Experimental brain research, 2015, Volume: 233, Issue:11

    Senescence-accelerated mouse (SAM) is an experimental model animal showing a short lifespan and rapid advancement of senescence. Especially, SAM prone 8 (SAMP8) shows age-related impairment of learning and memory, and thus, it is a good model for age-related cognitive function. However, the synaptic characteristics related to cognitive function of SAMP8 have been poorly understood. In this study, we quantitatively evaluated the synaptic transmission and synaptic plasticity using hippocampal slices obtained from SAMP8 with electrophysiological methods to elucidate the synaptic features of SAMP8. We used the field recordings to measure some synaptic parameters. The slope of field excitatory postsynaptic potentials decreased with age in both SAMP8 and SAM resistant 1 (SAMR1), the control strain of SAMP8. The paired-pulse ratio (PPR), a representative of short-term synaptic plasticity, also decreased in both strains with age. On the other hand, although both SAMR1 and SAMP8 exhibited age-dependent decrease in long-term potentiation (LTP), a representative of long-term synaptic plasticity, the decrease in LTP in SAMP8 started at 6 months of age, while in SAMR1, it was observed at 14 months but not at 6 months of age. The PPRs after high-frequency stimulation for LTP induction were smaller than those before the stimulation. These results indicate that synaptic plasticity in SAMP8 deteriorates at an earlier age compared to SAMR1, and are consistent with behavioral tests showing early impairment of learning and memory of SAMP8. Our study is the first report on quantitative analysis of synaptic function at SAMP8 hippocampus and corroborates the behavioral studies showing cognitive dysfunction with age; therefore, it will be helpful for future studies on aging.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; Aging; Animals; Biophysics; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Learning Disabilities; Long-Term Potentiation; Mice; Patch-Clamp Techniques

2015
GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury.
    Experimental neurology, 2015, Volume: 273

    Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region. We investigated whether mTBI induces morphological and pathophysiological alterations in the CA1 using the controlled cortical impact (CCI) model. Seven days after CCI, animals subjected to mTBI showed cognitive impairment in the passive avoidance test and deficits to long-term potentiation (LTP) of synaptic transmission. Deficiencies in inducing or maintaining LTP were likely due to an observed reduction in the activation of NMDA but not AMPA receptors. Significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs) were also observed 7 days after CCI. Design-based stereology revealed that although the total number of neurons was unaltered, the number of GABAergic interneurons is significantly reduced in the CA1 region 7 days after CCI. Additionally, the surface expression of α1, ß2/3, and γ2 subunits of the GABAA receptor were reduced, contributing to a reduced mIPSC frequency and amplitude, respectively. Together, these results suggest that mTBI causes a significant reduction in GABAergic inhibitory transmission and deficits to NMDA receptor mediated currents in the CA1, which may contribute to changes in hippocampal excitability and subsequent cognitive impairments after mTBI.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Avoidance Learning; Brain Injuries; CA1 Region, Hippocampal; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; GABAergic Neurons; Glucose Transporter Type 1; Glutamate Decarboxylase; Inhibitory Postsynaptic Potentials; Interneurons; Male; Memory Disorders; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, GABA-A; Sodium Channel Blockers; Tetrodotoxin; Time Factors

2015
Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease.
    Nature neuroscience, 2014, Volume: 17, Issue:2

    Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation-induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Brain Stem; Disease Models, Animal; Excitatory Amino Acid Antagonists; Female; HEK293 Cells; Humans; In Vitro Techniques; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Neurologic Mutants; Mutation; Neurons; Presynaptic Terminals; Receptors, Glycine; Sodium Channel Blockers; Spinal Cord; Stiff-Person Syndrome; Tetrodotoxin; Valine

2014
Acid-sensing ion channels activation and hypoxia upregulate Homer1a expression.
    CNS neuroscience & therapeutics, 2014, Volume: 20, Issue:3

    Recent studies have indicated that dynamic alterations in the structure of postsynaptic density (PSD) are involved in the pathogenesis of many central nervous system disorders, including ischemic stroke. Homer is the newly identified scaffolding protein located at PSD and regulates synaptic function. Homer1a, an immediate early gene, has been shown to be induced by several stimulations, such as glutamate, brain-derived neurotrophic factor, and trauma. However, whether acidosis mediated by acid-sensing ion channels (ASICs) and hypoxia during cerebral ischemia can change Homer1a expression remains to be determined.. We investigated that acidosis and hypoxia selectively and rapidly upregulated Homer1a expression, but not Homer1b/c in cultured cortical neurons. We also found that Homer1a exhibited induction expression in brain cortex of the middle cerebral artery occlusion (MCAO) rats. Additionally, acid-evoked Homer1a mRNA induction depended on extracellular signal-regulated kinase1/2 (ERK1/2) and Akt activity, and ASIC1a-mediated calcium influx whereas hypoxia depended only on ERK1/2 activity. Also, we demonstrated that continuous acidosis and hypoxia resulted in pronounced cell injury and Homer1a knockdown with small interfering RNA aggravated this damage induced by 3 h acid and hypoxia incubation in neuro-2a cells.. Homer1a might act as an activity-dependent regulator responding to extracellular stimuli during cerebral ischemia.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acid Sensing Ion Channel Blockers; Acid Sensing Ion Channels; Amiloride; Animals; Carrier Proteins; Cell Survival; Cells, Cultured; Disease Models, Animal; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Homer Scaffolding Proteins; Hypoxia; Infarction, Middle Cerebral Artery; Neurons; Peptides; Rats; Rats, Sprague-Dawley; Signal Transduction; Spider Venoms; Time Factors; Up-Regulation

2014
Long-term temporal imprecision of information coding in the anterior cingulate cortex of mice with peripheral inflammation or nerve injury.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, Aug-06, Volume: 34, Issue:32

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Cognition; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Freund's Adjuvant; Gyrus Cinguli; In Vitro Techniques; Mice; Mice, Inbred C57BL; Neurons; Patch-Clamp Techniques; Peripheral Nervous System Diseases; Rats; Rats, Sprague-Dawley; Synaptic Transmission; Valine

2014
Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.
    Brain research, 2014, Oct-24, Volume: 1586

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Apolipoproteins E; Cell Death; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroprotective Agents; Ocular Hypertension; Optic Nerve Injuries; Receptors, Kainic Acid; Retinal Degeneration; Retinal Ganglion Cells; Signal Transduction; Stilbamidines

2014
GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, Oct-01, Volume: 34, Issue:40

    Long-term potentiation of glutamatergic transmission has been observed after physiological learning or pathological injuries in different brain regions, including the spinal cord, hippocampus, amygdala, and cortices. The insular cortex is a key cortical region that plays important roles in aversive learning and neuropathic pain. However, little is known about whether excitatory transmission in the insular cortex undergoes plastic changes after peripheral nerve injury. Here, we found that peripheral nerve ligation triggered the enhancement of AMPA receptor (AMPAR)-mediated excitatory synaptic transmission in the insular cortex. The synaptic GluA1 subunit of AMPAR, but not the GluA2/3 subunit, was increased after nerve ligation. Genetic knock-in mice lacking phosphorylation of the Ser845 site, but not that of the Ser831 site, blocked the enhancement of the synaptic GluA1 subunit, indicating that GluA1 phosphorylation at the Ser845 site by protein kinase A (PKA) was critical for this upregulation after nerve injury. Furthermore, A-kinase anchoring protein 79/150 (AKAP79/150) and PKA were translocated to the synapses after nerve injury. Genetic deletion of adenylyl cyclase subtype 1 (AC1) prevented the translocation of AKAP79/150 and PKA, as well as the upregulation of synaptic GluA1-containing AMPARs. Pharmacological inhibition of calcium-permeable AMPAR function in the insular cortex reduced behavioral sensitization caused by nerve injury. Our results suggest that the expression of AMPARs is enhanced in the insular cortex after nerve injury by a pathway involving AC1, AKAP79/150, and PKA, and such enhancement may at least in part contribute to behavioral sensitization together with other cortical regions, such as the anterior cingulate and the prefrontal cortices.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebral Cortex; Disease Models, Animal; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Neuralgia; Phosphorylation; Picrotoxin; Receptors, AMPA; Sodium Channel Blockers; Subcellular Fractions; Synaptic Transmission; Tetrodotoxin

2014
Electrophysiological characterization of spino-sciatic and cortico-sciatic associative plasticity: modulation by trans-spinal direct current and effects on recovery after spinal cord injury in mice.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, Mar-13, Volume: 33, Issue:11

    Associative stimulation causes enduring changes in the nervous system based on the Hebbian concept of spike-timing-dependent plasticity. The present study aimed to characterize the immediate and long-term electrophysiological effects of associative stimulation at the level of spinal cord and to test how trans-spinal direct current stimulation (tsDC) modulates associative plasticity. The effect of combined associative stimulation and tsDC on locomotor recovery was tested in a unilateral model of spinal cord injury (SCI). Two associative protocols were tested: (1) spino-sciatic associative (SSA) protocol, in which the first stimulus originated from the sciatic nerve and the second from the spinal cord; and (2) cortico-sciatic associative (CSA) protocol, in which the first stimulus originated from the sciatic nerve and the second from the motor cortex. In addition, those two protocols were repeated in combination with cathodal tsDC application. SSA and CSA stimulation produced immediate enhancement of spinal and cortical outputs, respectively, depending on the duration of the interstimulus interval. Repetitive SSA or CSA stimulation produced long-term potentiation of spinal and cortical outputs, respectively. Applying tsDC during SSA or CSA stimulation markedly enhanced their immediate and long-term effects. In behaving mice with unilateral SCI, four consecutive 20 min sessions of CSA + tsDC markedly reduced error rate in a horizontal ladder-walking test. Thus, this form of artificially enhanced associative connection can be translated into a form of motor relearning that does not depend on practice or experience.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Biophysics; Cerebral Cortex; Disease Models, Animal; Electric Stimulation Therapy; Electrodes; Evoked Potentials, Motor; Excitatory Amino Acid Antagonists; Functional Laterality; Kynurenic Acid; Male; Mice; Neural Pathways; Neuronal Plasticity; Psychomotor Performance; Reaction Time; Recovery of Function; Sciatic Nerve; Spinal Cord; Spinal Cord Injuries; Time Factors; Walking

2013
The balance of striatal feedback transmission is disrupted in a model of parkinsonism.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, Mar-13, Volume: 33, Issue:11

    Inhibitory connections among striatal projection neurons (SPNs) called "feedback inhibition," have been proposed to endow the striatal microcircuit with computational capabilities, such as motor sequence selection, filtering, and the emergence of alternating network states. These properties are disrupted in models of Parkinsonism. However, the impact of feedback inhibition in the striatal network has remained under debate. Here, we test this inhibition at the microcircuit level. We used optical and electrophysiological recordings in mice and rats to demonstrate the action of striatal feedback transmission in normal and pathological conditions. Dynamic calcium imaging with single-cell resolution revealed the synchronous activation of a pool of identified SPNs by antidromic stimulation. Using bacterial artificial chromosome-transgenic mice, we demonstrate that the activated neuron pool equally possessed cells from the direct and indirect basal ganglia pathways. This pool inhibits itself because of its own GABA release when stimuli are frequent enough, demonstrating functional and significant inhibition. Blockade of GABAA receptors doubled the number of responsive neurons to the same stimulus, revealing a second postsynaptic neuron pool whose firing was being arrested by the first pool. Stronger connections arise from indirect SPNs. Dopamine deprivation impaired striatal feedback transmission disrupting the ability of a neuronal pool to arrest the firing of another neuronal pool. We demonstrate that feedback inhibition among SPNs is strong enough to control the firing of cell ensembles in the striatal microcircuit. However, to be effective, feedback inhibition should arise from synchronized pools of SPNs whose targets are other SPNs pools.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Adrenergic Agents; Anesthetics, Local; Animals; Animals, Newborn; Bicuculline; Biophysics; Calcium; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; Feedback, Physiological; GABA Antagonists; gamma-Aminobutyric Acid; Green Fluorescent Proteins; In Vitro Techniques; Lidocaine; Lysine; Male; Mice; Mice, Transgenic; Monte Carlo Method; Neostriatum; Neural Inhibition; Neural Pathways; Neurons; Oxidopamine; Parkinsonian Disorders; Patch-Clamp Techniques; Pyridazines; Rats; Rats, Wistar; Reaction Time; Receptors, Dopamine D1; Receptors, Dopamine D2; Synaptic Transmission; Time Factors; Valine

2013
Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors.
    Neuropharmacology, 2013, Volume: 72

    The medial prefrontal cortex (mPFC) has been implicated in modulating anxiety. However, it is unknown whether excitatory or inhibitory neurotransmission in the infralimbic (IL) subregion of the mPFC underlies the pathology of anxiety-related behavior. To address this issue, we infused the GABAA receptor (GABAAR) antagonist bicuculline to temporarily activate the IL cortex. IL cortex activation decreased the time spent in the center area in the open field test, decreased exploration of the open-arms in the elevated plus maze test, and increased the latency to bite food in the novelty-suppressed feeding test. These findings substantiate the GABAergic system's role in anxiety-related behaviors. IL cortex inactivation with the AMPA receptor (AMPAR) antagonist CNQX produced opposite, anxiolytic effects. However, infusion of the NMDA receptor (NMDAR) antagonist AP5 into the IL cortex had no significant effect. Additionally, we did not observe motor activity deficits or appetite deficits following inhibition of GABAergic or glutamatergic neurotransmission. Interestingly, we found parallel and corresponding electrophysiological changes in anxious mice; compared to mice with relatively low anxiety, the relatively high anxiety mice exhibited smaller evoked inhibitory postsynaptic currents (eIPSCs) and larger AMPA-mediated evoked excitatory postsynaptic currents (eEPSCs) in pyramidal neurons in the IL cortex. The changes of eIPSCs and eEPSCs were due to presynaptic mechanisms. Our results suggest that imbalances of neurotransmission in the IL cortex may cause a net increase in excitatory inputs onto pyramidal neurons, which may underlie the pathogenic mechanism of anxiety disorders.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Anxiety; Bicuculline; Disease Models, Animal; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Exploratory Behavior; GABA-A Receptor Antagonists; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Injections, Intraventricular; Male; Maze Learning; Mice; Mice, Inbred C57BL; Patch-Clamp Techniques; Prefrontal Cortex

2013
Dopamine release regulation by astrocytes during cerebral ischemia.
    Neurobiology of disease, 2013, Volume: 58

    Brain ischemia triggers excessive release of neurotransmitters that mediate neuronal damage following ischemic injury. The striatum is one of the areas most sensitive to ischemia. Release of dopamine (DA) from ischemic neurons is neurotoxic and directly contributes to the cell death in affected areas. Astrocytes are known to be critically involved in the physiopathology of cerebrovascular disease. However, their response to ischemia and their role in neuroprotection in striatum are not completely understood. In this study, we used an in vitro model to evaluate the mechanisms of ischemia-induced DA release, and to study whether astrocytes modulate the release of DA in response to short-term ischemic conditions. Using slices of adult mouse brain exposed to oxygen and glucose deprivation (OGD), we measured the OGD-evoked DA efflux using fast cyclic voltammetry and also assessed metabolic impairment by 2,3,5-triphenyltetrazolium chloride (TTC) and tissue viability by propidium iodide (PI) staining. Our data indicate that ischemia induces massive release of DA by dual mechanisms: one which operates via vesicular exocytosis and is action potential dependent and another involving reverse transport by the dopamine transporter (DAT). Simultaneous blockade of astrocyte glutamate transporters and DAT prevented the massive release of dopamine and reduced the brain tissue damage. The present results provide the first experimental evidence that astrocytes function as a key cellular element of ischemia-induced DA release in striatum, constituting a novel and promising therapeutic target in ischemia.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Astrocytes; Calcium; Corpus Striatum; Disease Models, Animal; Dopamine; Dopamine Plasma Membrane Transport Proteins; Dopamine Uptake Inhibitors; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Exocytosis; Functional Laterality; Hypoxia-Ischemia, Brain; In Vitro Techniques; Mice; Mice, Inbred C57BL; Neurotoxicity Syndromes; Oxidopamine; Piperazines; Tetrodotoxin; Time Factors

2013
BLA to vHPC inputs modulate anxiety-related behaviors.
    Neuron, 2013, Aug-21, Volume: 79, Issue:4

    The basolateral amygdala (BLA) and ventral hippocampus (vHPC) have both been implicated in mediating anxiety-related behaviors, but the functional contribution of BLA inputs to the vHPC has never been directly investigated. Here we show that activation of BLA-vHPC synapses acutely and robustly increased anxiety-related behaviors, while inhibition of BLA-vHPC synapses decreased anxiety-related behaviors. We combined optogenetic approaches with in vivo pharmacological manipulations and ex vivo whole-cell patch-clamp recordings to dissect the local circuit mechanisms, demonstrating that activation of BLA terminals in the vHPC provided monosynaptic, glutamatergic inputs to vHPC pyramidal neurons. Furthermore, BLA inputs exerted polysynaptic, inhibitory effects mediated by local interneurons in the vHPC that may serve to balance the circuit locally. These data establish a role for BLA-vHPC synapses in bidirectionally controlling anxiety-related behaviors in an immediate, yet reversible, manner and a model for the local circuit mechanism of BLA inputs in the vHPC.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Anxiety; Bacterial Proteins; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Channelrhodopsins; Disease Models, Animal; Excitatory Amino Acid Antagonists; Exploratory Behavior; Halorhodopsins; Hippocampus; In Vitro Techniques; Luminescent Proteins; Male; Maze Learning; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neural Pathways; Neurons; Sodium Channel Blockers; Synapses; Tetrodotoxin; Valine

2013
Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption.
    Journal of neurochemistry, 2013, Volume: 126, Issue:2

    NMDA-type glutamate receptors mediate both trophic and excitotoxic signalling in CNS neurons. We have previously shown that blocking NMDAR- post-synaptic density-95 (PSD95) interactions provides significant protection from excitotoxicity and in vivo ischaemia; however, the mechanism of neuroprotection is unclear. Here, we report that blocking PSD-95 interactions with the Tat-NR2B9c peptide enhances a Ca²⁺-dependent protective pathway converging on cAMP Response Element binding protein (CREB) activation. We provide evidence that Tat-NR2B9c neuroprotection from oxygen glucose deprivation and NMDA toxicity occurs in parallel with the activation of calmodulin kinase signalling and is dependent on a sustained phosphorylation of the CREB transcription factor and its activator CaMKIV. Tat-NR2B9c-dependent neuroprotection and CREB phosphorylation are blocked by coapplication of CaM kinase (KN93 and STO-609) or CREB (KG-501) inhibitors, and by siRNA knockdown of CaMKIV. These results are mirrored in vivo in a rat model of permanent focal ischaemia. Tat-NR2B9c application significantly reduces infarct size and causes a selective and sustained elevation in CaMKIV phosphorylation; effects which are blocked by coadministration of KN93. Thus, calcium-dependent nuclear signalling via CaMKIV and CREB is critical for neuroprotection via NMDAR-PSD95 blockade, both in vitro and in vivo. This study highlights the importance of maintaining neuronal function following ischaemic injury. Future stroke research should target neurotrophic and pro-survival signal pathways in the development of novel neuroprotective strategies.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Brain Infarction; Calcium Channel Blockers; Calcium-Calmodulin-Dependent Protein Kinase Type 4; Cells, Cultured; Cerebral Cortex; CREB-Binding Protein; Disease Models, Animal; Disks Large Homolog 4 Protein; Embryo, Mammalian; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glucose; Hypoxia; In Vitro Techniques; Infarction, Middle Cerebral Artery; Intracellular Signaling Peptides and Proteins; Male; Membrane Proteins; Neurons; Nimodipine; Phosphorylation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Time Factors

2013
Cerebroside-A provides potent neuroprotection after cerebral ischaemia through reducing glutamate release and Ca²⁺ influx of NMDA receptors.
    The international journal of neuropsychopharmacology, 2012, Volume: 15, Issue:4

    Excessive presynaptic glutamate release after cerebral ischaemia leads to neuronal death mainly through excessive calcium entry of N-methyl-D-aspartate receptors (NMDARs). Our recent study reported that cerebroside can open large-conductance Ca²⁺-activated K⁺ (BKCa) channels. The present study evaluated the effects of cerebroside-A (CS-A), a single molecule isolated from an edible mushroom, on brain injury after focal or global ischaemia in adult male mice and rats. We herein report that treatment with CS-A after 60-min middle cerebral artery occlusion dose-dependently reduced the cerebral infarction with at least a 6-h efficacious time-window, which was partially blocked by the BKCa channel blocker charybdotoxin (CTX). Treatment with CS-A after 20 min global cerebral ischaemia (four-vessel occlusion) significantly attenuated the death of pyramidal cells in hippocampal CA1 area, which was also sensitive to CTX. CS-A, by opening the BKCa channel, could prevent excessive glutamate release after oxygen-glucose deprivation (OGD). In addition, CS-A could inhibit NMDAR Ca²⁺ influx, which did not require the activation of the BKCa channel. Furthermore, CS-A blocked the OGD-induced NMDAR-dependent long-term potentiation in hippocampal CA1 region. These findings indicate that treatment with CS-A after stroke exerts potent neuroprotection through prevention of excessive glutamate release and reduction of Ca²⁺ influx through NMDARs.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Brain Ischemia; Calcium; Cerebral Infarction; Cerebrosides; Charybdotoxin; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glucose; Glutamic Acid; Hippocampus; Hypoxia; In Vitro Techniques; Infarction, Middle Cerebral Artery; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neuroprotective Agents; Neurotoxins; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Tetrazolium Salts; Valine

2012
Septotemporal position in the hippocampal formation determines epileptic and neurogenic activity in temporal lobe epilepsy.
    Cerebral cortex (New York, N.Y. : 1991), 2012, Volume: 22, Issue:1

    It is a matter of ongoing debate whether newly generated granule cells contribute to epileptic activity in the hippocampus. To address this question, we investigated neurogenesis and epileptiform activity (EA) along the hippocampal septotemporal axis in the intrahippocampal kainate (KA) mouse model for temporal lobe epilepsy. Multisite intrahippocampal in vivo recordings and immunolabeling for c-Fos showed that the KA-induced status epilepticus (SE) extended along the septotemporal axis of both hippocampi with stronger intensity at ipsilateral temporal and contralateral sites. Accordingly, we found a position-dependent increase in proliferation (incorporation of bromodeoxyuridine) and neurogenesis (immunolabeling for doublecortin): Both were selectively increased in the ipsilateral temporal and entire contralateral subgranular zone, sparing the septal region close to the injection site. The newborn neurons were hyperexcitable and functionally integrated into the hippocampal network as revealed by patch-clamp recordings. Analysis of chronic EA also showed a differential intensity pattern along the hippocampal axis: EA was low in the septal portion with prominent sclerosis and granule cell dispersion but most pronounced in the transition zone where neurogenesis reappeared. In conclusion, SE stimulates neurogenesis in a position-dependent manner and coincidence of neurogenesis and stronger EA distal to the injection site suggests a proepileptogenic effect of increased neurogenesis.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Bromodeoxyuridine; Cell Count; Cell Proliferation; Convulsants; Disease Models, Animal; Doublecortin Domain Proteins; Electric Stimulation; Electroencephalography; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Functional Laterality; Hippocampus; Kainic Acid; Luminescent Proteins; Lysine; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microtubule-Associated Proteins; Motor Activity; Neurogenesis; Neuropeptides; Patch-Clamp Techniques; Picrotoxin

2012
The afterhyperpolarizing potential following a train of action potentials is suppressed in an acute epilepsy model in the rat Cornu Ammonis 1 area.
    Neuroscience, 2012, Jan-10, Volume: 201

    In hippocampal Cornu Ammonis 1 (CA1) neurons, a prolonged depolarization evokes a train of action potentials followed by a prominent afterhyperpolarizing potential (AHP), which critically dampens neuronal excitability. Because it is not known whether epileptiform activity alters the AHP and whether any alteration of the AHP is independent of inhibition, we acutely induced epileptiform activity by bath application of the GABA(A) receptor blocker gabazine (5 μM) in the rat hippocampal slice preparation and studied its impact on the AHP using intracellular recordings. Following 10 min of gabazine wash-in, slices started to develop spontaneous epileptiform discharges. This disinhibition was accompanied by a significant shift of the resting membrane potential of CA1 neurons to more depolarized values. Prolonged depolarizations (600 ms) elicited a train of action potentials, the number of which was not different between baseline and gabazine treatment. However, the AHP following the train of action potentials was significantly reduced after 20 min of gabazine treatment. When the induction of epileptiform activity was prevented by co-application of 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 10 μM) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 μM) to block α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors, respectively, the AHP was preserved despite of GABA(A) receptor inhibition suggesting that the epileptiform activity was required to suppress the AHP. Moreover, the AHP was also preserved when the slices were treated with the protein kinase blockers H-9 (100 μM) and H-89 (1 μM). These results demonstrate that the AHP following a train of action potentials is rapidly suppressed by acutely induced epileptiform activity due to a phosphorylation process-presumably involving protein kinase A.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; CA1 Region, Hippocampal; Disease Models, Animal; Drug Interactions; Electric Stimulation; Enzyme Inhibitors; Epilepsy; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Isoquinolines; Male; Neural Inhibition; Neurons; Pyridazines; Rats; Rats, Wistar; Statistics, Nonparametric; Sulfonamides; Time Factors

2012
Potentiation of synaptic strength and intrinsic excitability in the nucleus accumbens after 10 days of morphine withdrawal.
    Journal of neuroscience research, 2012, Volume: 90, Issue:6

    Neuroadaptations in the nucleus accumbens (NAc) are associated with the development of drug addiction. Plasticity in synaptic strength and intrinsic excitability of NAc medium spiny neurons (MSNs) play critical roles in addiction induced by different classes of abused drugs. However, it is unknown whether morphine exposure influences synaptic strength, intrinsic excitability or both in NAc. Here we show that chronic withdrawal (10 days after the last injection) from repeated morphine exposure elicited potentiation in both glutamatergic synaptic strength and intrinsic excitability of MSNs in NAc shell (NAcSh). The potentiation of synaptic strength was demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), a decrease in the paired-pulse ratio (PPR), and an increase in the ratio of α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR)- to N-methyl-D-aspartate receptors (NMDAR)-mediated currents. The potentiation of intrinsic excitability was mediated by inhibition of the sustained potassium currents via extrasynaptic NMDAR activation. The function of the presynaptic group II metabotropic glutamate receptors (mGluR2/3) was downregulated, enhancing the probability of glutamate release on synaptic terminals during chronic morphine withdrawal. Pretreatment with the mGluR2/3 agonist LY379268 completely blocked potentiation of both synaptic strength and intrinsic excitability. These results suggest that chronic morphine withdrawal downregulates mGluR2/3 to induce potentiation of MSN glutamatergic synapse via increased glutamate release, leading to potentiation of intrinsic excitability. Such potentiation of both synaptic strength and intrinsic excitability might contribute to neuroadaptations induced by morphine application.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Analysis of Variance; Animals; Bridged Bicyclo Compounds, Heterocyclic; Disease Models, Animal; Down-Regulation; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Male; Morphine; Narcotics; Neurons; Neuroprotective Agents; Nucleus Accumbens; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Synapses; Xanthines

2012
Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex.
    Neuron, 2012, Mar-08, Volume: 73, Issue:5

    Chronic stress could trigger maladaptive changes associated with stress-related mental disorders; however, the underlying mechanisms remain elusive. In this study, we found that exposing juvenile male rats to repeated stress significantly impaired the temporal order recognition memory, a cognitive process controlled by the prefrontal cortex (PFC). Concomitantly, significantly reduced AMPAR- and NMDAR-mediated synaptic transmission and glutamate receptor expression were found in PFC pyramidal neurons from repeatedly stressed animals. All these effects relied on activation of glucocorticoid receptors and the subsequent enhancement of ubiquitin/proteasome-mediated degradation of GluR1 and NR1 subunits, which was controlled by the E3 ubiquitin ligase Nedd4-1 and Fbx2, respectively. Inhibition of proteasomes or knockdown of Nedd4-1 and Fbx2 in PFC prevented the loss of glutamatergic responses and recognition memory in stressed animals. Our results suggest that repeated stress dampens PFC glutamatergic transmission by facilitating glutamate receptor turnover, which causes the detrimental effect on PFC-dependent cognitive processes.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Bicuculline; Cognition Disorders; Disease Models, Animal; Endosomal Sorting Complexes Required for Transport; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; F-Box Proteins; GABA-A Receptor Antagonists; Immunoprecipitation; In Vitro Techniques; Male; Nedd4 Ubiquitin Protein Ligases; Neuropsychological Tests; Prefrontal Cortex; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Recognition, Psychology; Restraint, Physical; RNA, Small Interfering; Stress, Psychological; Ubiquitin-Protein Ligases

2012
Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Jun-27, Volume: 32, Issue:26

    Neuropathic pain is a common cause of pain after nerve injury, but its molecular basis is poorly understood. In a post-gene chip microarray effort to identify new target genes contributing to neuropathic pain development, we report here the characterization of a novel neuropathic pain contributor, thrombospondin-4 (TSP4), using a neuropathic pain model of spinal nerve ligation injury. TSP4 is mainly expressed in astrocytes and significantly upregulated in the injury side of dorsal spinal cord that correlates with the development of neuropathic pain states. TSP4 blockade by intrathecal antibodies, antisense oligodeoxynucleotides, or inactivation of the TSP4 gene reverses or prevents behavioral hypersensitivities. Intrathecal injection of TSP4 protein into naive rats is sufficient to enhance the frequency of EPSCs in spinal dorsal horn neurons, suggesting an increased excitatory presynaptic input, and to cause similar behavioral hypersensitivities. Together, these findings support that injury-induced spinal TSP4 may contribute to spinal presynaptic hypersensitivity and neuropathic pain states. Development of TSP4 antagonists has the therapeutic potential for target-specific neuropathic pain management.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Antibodies; Disease Models, Animal; Excitatory Amino Acid Antagonists; Green Fluorescent Proteins; Humans; Hyperalgesia; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Injections, Spinal; Male; Mice; Mice, Transgenic; Motor Activity; Neuralgia; Oligodeoxyribonucleotides, Antisense; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Spinal Cord; Spinal Nerves; Tetrodotoxin; Thrombospondins; Up-Regulation; Valine

2012
Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus.
    Epilepsia, 2011, Volume: 52, Issue:9

    γ-Aminobutyric acid (GABA)ergic transmission plays an important role in the initiation of epileptic activity and the generation of ictal discharges. The functional alterations in the epileptiform hippocampus critically depend on GABAergic mechanisms and cation-chloride cotransporters.. To understand the cellular basis of specific functional alterations in the epileptic hippocampus, we studied physiologic characteristics and pharmacologically isolated evoked GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) recorded from principal neurons in hippocampal slices from status epilepticus (SE) and control rats using whole-cell and gramicidin perforated patch-clamp recordings.. Whereas the resting membrane potential and input resistance were not significantly different between control and epileptic tissue, the reversal potential (E(GABA) ) of IPSCs was significantly shifted to more positive values in SE rats with regard to the resting membrane potential. Pharmacologic experiments and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) showed that the observed changes in the epileptic tissue were due to a decreased ratio of the main Cl(-) extrusion transporter (K(+) -Cl(-) cotransporter, KCC2) to the main Cl(-) uptake transporter (Na(+) -K(+) -2Cl(-) cotransporter, NKCC1).. Our results suggest that alterations of cation-chloride cotransporter functions, comprising a higher NKCC1 action, contribute to hyperexcitability within the hippocampus following SE.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Biophysical Phenomena; Bumetanide; Chlorides; Disease Models, Animal; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Furosemide; Gene Expression Regulation; Hippocampus; Homeostasis; In Vitro Techniques; Inhibitory Postsynaptic Potentials; K Cl- Cotransporters; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Pilocarpine; Rats; Rats, Wistar; Receptors, GABA-A; RNA, Messenger; Sodium Potassium Chloride Symporter Inhibitors; Status Epilepticus; Symporters

2011
Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Oct-19, Volume: 31, Issue:42

    Mechanisms of inflammatory pain are not fully understood. We investigated the role of TRPV1 (transient receptor potential subtype V1) and TNF-α, two critical mediators for inflammatory pain, in regulating spinal cord synaptic transmission. We found in mice lacking Trpv1 the frequency but not the amplitude of spontaneous EPSCs (sEPSCs) in lamina II neurons of spinal cord slices is reduced. Further, C-fiber-induced spinal long-term potentiation (LTP) in vivo is abolished in Trpv1 knock-out mice. TNF-α also increases sEPSC frequency but not amplitude in spinal outer lamina II (lamina IIo) neurons, and this increase is abolished in Trpv1 knock-out mice. Single-cell PCR analysis revealed that TNF-α-responding neurons in lamina IIo are exclusively excitatory (vGluT2(+)) neurons. Notably, neuroprotectin-1 (NPD1), an anti-inflammatory lipid mediator derived from ω-3 polyunsaturated fatty acid (docosahexaenoic acid), blocks TNF-α- and capsaicin-evoked sEPSC frequency increases but has no effect on basal synaptic transmission. Strikingly, NPD1 potently inhibits capsaicin-induced TRPV1 current (IC(50) = 0.4 nm) in dissociated dorsal root ganglion neurons, and this IC(50) is ≈ 500 times lower than that of AMG9810, a commonly used TRPV1 antagonist. NPD1 inhibition of TRPV1 is mediated by GPCRs, since the effects were blocked by pertussis toxin. In contrast, NPD1 had no effect on mustard oil-induced TRPA1 currents. Spinal injection of NPD1, at very low doses (0.1-10 ng), blocks spinal LTP and reduces TRPV1-dependent inflammatory pain, without affecting baseline pain. NPD1 also reduces TRPV1-independent but TNF-α-dependent pain hypersensitivity. Our findings demonstrate a novel role of NPD1 in regulating TRPV1/TNF-α-mediated spinal synaptic plasticity and identify NPD1 as a novel analgesic for treating inflammatory pain.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acrylamides; Analysis of Variance; Animals; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Disease Models, Animal; Docosahexaenoic Acids; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Freund's Adjuvant; Ganglia, Spinal; In Vitro Techniques; Inflammation; Long-Term Potentiation; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pain; Pain Measurement; Patch-Clamp Techniques; Receptors, Tumor Necrosis Factor; Receptors, Tumor Necrosis Factor, Type I; Spinal Cord; TRPV Cation Channels; Tumor Necrosis Factor-alpha

2011
Spatiotemporal organization and thalamic modulation of seizures in the mouse medial thalamic-anterior cingulate slice.
    Epilepsia, 2011, Volume: 52, Issue:12

    Seizure-like activities generated in anterior cingulate cortex (ACC) are usually classified as simple partial and are associated with changes in autonomic function, motivation, and thought. Previous studies have shown that thalamic inputs can modulate ACC seizure, but the exact mechanisms have not been studied thoroughly. Therefore, we investigated the role of thalamic inputs in modulating ACC seizure-like activities. In addition, seizure onset and propagation are difficult to determine in vivo in ACC. We studied the spatiotemporal changes in epileptiform activity in this cortex in a thalamic-ACC slice to clearly determine seizure onset.. We used multielectrode array (MEA) recording and calcium imaging to investigate the modulatory effect of thalamic inputs in a thalamic-ACC slice preparation.. Seizure-like activities induced with 4-aminopyridine (4-AP; 250 μm) and bicuculline (5-50 μm) in ACC were attenuated by glutamate receptor antagonists, and the degree of disinhibition varied with the dose of bicuculline. Seizure-like activities were decreased with 1 Hz thalamic stimulation, whereas corpus callosum stimulation could increase ictal discharges. Amplitude and duration of cingulate seizure-like activities were augmented after removing thalamic inputs, and this effect was not observed with those induced with elevated bicuculline (50 μm). Seizure-like activities were initiated in layers II/III and, after thalamic lesions, they occurred mainly in layers V/VI. Two-dimensional current-source density analyses revealed sink signals more frequently in layers V/VI after thalamic lesions, indicating that these layers produce larger excitatory synchronization. Calcium transients were synchronized after thalamic lesions suggesting that ACC seizure-like activities are subjected to desynchronizing modulation by thalamic inputs. Therefore, ACC seizure-like activities are subject to desynchronizing modulation from medial thalamic inputs to deep layer pyramidal neurons.. Cingulate seizure-like activities were modulated significantly by thalamic inputs. Repeated stimulation of the thalamus efficiently inhibited epileptiform activity, demonstrating that the desynchronization was pathway-specific. The clinical implications of deep thalamic stimulation in the modulation of cingulate epileptic activity require further investigation.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Bicuculline; Biological Clocks; Calcium; Corpus Callosum; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Electrodes; Gyrus Cinguli; In Vitro Techniques; Male; Mice; Mice, Inbred C57BL; Muscimol; Neural Pathways; Seizures; Thalamus

2011
Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.
    Neuroscience, 2010, Feb-03, Volume: 165, Issue:3

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Cell Survival; Disease Models, Animal; Drug Therapy, Combination; Efferent Pathways; Excitatory Amino Acid Antagonists; In Vitro Techniques; Kainic Acid; Locomotion; Motor Neurons; Nerve Fibers, Myelinated; Neurons; Neuroprotective Agents; Posterior Horn Cells; Rats; Rats, Wistar; Spinal Cord Injuries; Time Factors

2010
The effect of intra-locus coeruleus injection of 17beta-estradiol on inflammatory pain modulation in male rat.
    Behavioural brain research, 2010, Dec-25, Volume: 214, Issue:2

    Estradiol is a neuroactive steroid found in several brain areas such as locus coeruleus (LC). It modulates nociception by binding to its receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABA(A) receptors. LC is involved in noradrenergic descending pain modulation. In order to study the effect of 17beta-estradiol on both acute and persistent pain modulation and its mechanisms, formalin was injected into the male rat's hind paw. Formalin-induced responses including licking, flexing duration and paw jerking frequency were recorded for 60 min after injection of 50 microl of 2% formalin. The results of the current study showed that intra-locus coeruleus injection of 17beta-estradiol attenuated the second phase, but not the acute phase of formalin-induced pain (P<0.05). AMPA receptor antagonists CNQX had no effect on pain-modulatory effect of 17beta-estradiol. Estrogen and GABA(A) receptor antagonists (ICI 182,780 and bicuculline, respectively) could not reverse the antinociceptive effect of 17beta-estradiol. However, NMDA receptor antagonist APV significantly antagonized the analgesic effect of 17beta-estradiol on flexing behaviour (P<0.05). It may be concluded that the analgesic effect of 17beta-estradiol in formalin-induced inflammatory pain is mediated through interaction with membrane-bound receptors, probably the NMDA receptors.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Disease Models, Animal; Estradiol; Estrogen Antagonists; Estrogens; Formaldehyde; Fulvestrant; Inflammation; Locus Coeruleus; Male; Microinjections; Pain; Rats; Rats, Sprague-Dawley; Valine

2010
Role of low-voltage-activated calcium current on the firing pattern alterations induced by hypothyroidism in the rat hippocampus.
    Neuroscience, 2010, Dec-29, Volume: 171, Issue:4

    Thyroid hormone deficiency during a critical period of development severely affects cognitive functions, resulting in profound mental retardation. Despite the importance of the disorder, the cellular mechanisms underlying these deficits remain largely unexplored. The aim of this study was to examine the effects of the absence of thyroid hormone on the development of the intrinsic properties of CA1 hippocampal pyramidal cells. These cells are known to exhibit different firing patterns during development, being classified as either regular-spiking or burst-spiking cells. Patch-clamp experiments showed that hypothyroid rats presented a larger number of regular-spiking cells at early postnatal age (P9-11). This difference in firing-pattern distribution disappeared at the pre-weanling age (P17-19), when almost every cell displayed bursting behavior in both control and hypothyroid rats. However, when studied in detail, weanling hypothyroid rats presented a smaller number of spikes per burst than did control animals. One of the major factors behind bursting behavior is sustained depolarization following an action potential. In this study, we show that action potential afterdepolarizations of hypothyroid animals registered shorter half-durations than did controls, a fact which could explain the smaller number of action potentials per burst. Additionally, the afterdepolarizations observed on both hypothyroid and control neurons were highly sensitive to low concentrations of nickel, suggesting that a low-threshold Ca(2+) current is key in the generation of spike afterdepolarizations and in the control of the bursting pattern of firing of these neurons. In agreement with this, experiments performed on dissociated hippocampal neurons have shown that this current is significantly depressed in hypothyroid animals. Therefore, we conclude that an alteration of the low-threshold calcium current is the basic factor explaining the differences observed in the firing behavior of hypothyroid animals.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Age Factors; Animals; Animals, Newborn; Biophysics; Calcium; Calcium Channels; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; Hippocampus; Hypothyroidism; In Vitro Techniques; Methimazole; Neurons; Patch-Clamp Techniques; Picrotoxin; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Wistar; Sodium Channel Blockers; Tetrodotoxin

2010
Enhanced excitatory and reduced inhibitory synaptic transmission contribute to persistent pain-induced neuronal hyper-responsiveness in anterior cingulate cortex.
    Neuroscience, 2010, Dec-29, Volume: 171, Issue:4

    The anterior cingulate cortex (ACC) has been demonstrated to play an important role in the affective dimension of pain. Although much evidence has pointed to an increased excitatory synaptic transmission in the ACC in some of the pathological pain state, the inhibitory synaptic transmission in this process has not been well studied. Also, the overall changes of excitatory and inhibitory synaptic transmission have not been comparatively studied in an animal model displaying both long-term persistent nociception and hyperalgesia. Here we used patch clamp recordings in ACC brain slices to observe the changes in synaptic transmission in a pain model induced by peripheral bee venom injection. First, we show that, comparing with those of naive and saline controlled rats, there was a significant increase in spike frequency in ACC neurons harvested from rats after 2 h period of peripheral persistent painful stimuli. Second, it is further shown that the frequency, amplitude and half-width were all increased in spontaneous excitatory post-synaptic currents (sEPSCs), while the amplitude of spontaneous inhibitory post-synaptic currents (sIPSCs) was decreased. The recordings of miniature post-synaptic currents demonstrate an increase in frequency of miniature excitatory post-synaptic currents (mEPSCs) and a decrease in both frequency and amplitude of miniature inhibitory post-synaptic currents (mIPSCs) in rats' ACC slice of bee venom treatment. Taken together, the present results demonstrate an unparalleled change between excitatory and inhibitory synaptic transmission in the ACC under a state of peripheral persistent nociception that might be underlying mechanisms of the excessive excitability of the ACC neurons. We propose that the painful stimuli when lasts or becomes persistent may cause a disruption of the balance between excitatory and inhibitory synaptic transmission that can contribute to the functional change in the ACC.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Analysis of Variance; Animals; Bee Venoms; Bicuculline; Biophysics; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Gyrus Cinguli; Male; Neural Inhibition; Neurons; Pain; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Synaptic Transmission; Tetrodotoxin

2010
Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia.
    Neuroscience, 2009, Mar-17, Volume: 159, Issue:2

    Large aspiny neurons and most of the GABAergic interneurons survive transient cerebral ischemia while medium spiny neurons degenerate in 24 h. Expression of a long-term enhancement of excitatory transmission in medium spiny neurons but not in large aspiny neurons has been indicated to contribute to this selective vulnerability. Because neuronal excitability is determined by the counterbalance of excitation and inhibition, the present study examined inhibitory synaptic transmission in large aspiny neurons after ischemia in rats. Transient cerebral ischemia was induced for 22 min using the four-vessel occlusion method and whole-cell voltage-clamp recording was performed on striatal slices. The amplitudes of evoked inhibitory postsynaptic currents in large aspiny neurons were significantly increased at 3 and 24 h after ischemia, which was mediated by the increase of presynaptic release. Postsynaptic responses were depressed at 24 h after ischemia. Inhibitory postsynaptic currents could be evoked in large aspiny neurons at 24 h after ischemia, suggesting that they receive GABAergic inputs from the survived GABAergic interneurons. Muscimol, a GABA(A) receptor agonist, presynaptically facilitated inhibitory synaptic transmission at 24 h after ischemia. Such facilitation was dependent on the extracellular calcium and voltage-gated sodium channels. The present study demonstrates an enhancement of inhibitory synaptic transmission in large aspiny neurons after ischemia, which might reduce excitotoxicity and contribute, at least in part, to the survival of large aspiny neurons. Our data also suggest that large aspiny neurons might receive inhibitory inputs from GABAergic interneurons.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Biophysics; Biotin; Calcium; Choline O-Acetyltransferase; Corpus Striatum; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Glutamate Decarboxylase; In Vitro Techniques; Ion Channel Gating; Ischemic Attack, Transient; Male; Membrane Potentials; Muscimol; Neurons; Ovulation Inhibition; Patch-Clamp Techniques; Rats; Rats, Wistar; Sodium Channel Blockers; Synaptic Transmission; Tetrodotoxin; Time Factors

2009
Glutamine induces epileptiform discharges in superficial layers of the medial entorhinal cortex from pilocarpine-treated chronic epileptic rats in vitro.
    Epilepsia, 2009, Volume: 50, Issue:4

    Glutamine (GLN) is a precursor for synthesis of glutamate and gamma-aminobutyric acid (GABA) and has been found in the cerebrospinal fluid (CSF) at mean concentrations of 0.6 mM. Experiments on slices are usually performed in artificial CSF (aCSF) kept free of amino acids. Therefore, the role of glutamine, particularly in tissue of epileptic animals, remains elusive.. Using extracellular recordings we studied effects of GLN on field potentials and stimulus-evoked field responses in the medial entorhinal cortex (MEC) of combined entorhinal cortex hippocampal slices from pilocarpine-treated chronic epileptic rats and age-matched saline-injected control rats.. In presence of GLN (0.5 and 2 mM) recurrent epileptiform discharges (REDs) were observed in slices from epileptic rats (64% and 80%, respectively), but not in slices from control rats. REDs were restricted to the superficial MEC, suppressed by the alpha-Amino-3-hydroxy-5-methyl-4-isoxazol-propionate (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (30 microM), attenuated by the inhibitor of neuronal glutamine transporters methylamino-isobutyric acid (10 mM), and apparently augmented and prolonged by the GABA(A) receptor antagonist bicuculline-methiodide (5 microM). In contrast, amplitudes of stimulus evoked nonsynaptic and synaptic field responses increased in slices from control rats (+23% and +12% of the reference values) and insignificantly less or not in those of epileptic rats (+6.5% and -0.25%, respectively). Notably, stimulus-evoked slow negative transients confined to slices of epileptic animals were reduced in amplitude (-18%).. In combined entorhinal hippocampal slices from chronic epileptic animals, GLN induces glutamatergic REDs via neuronal uptake in superficial layers of the MEC where inhibitory function seemed to be partially preserved.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminoisobutyric Acids; Animals; Bicuculline; Disease Models, Animal; Entorhinal Cortex; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA Antagonists; Glutamine; In Vitro Techniques; Male; Pilocarpine; Rats; Rats, Wistar; Status Epilepticus

2009
Severity of atypical absence phenotype in GABAB transgenic mice is subunit specific.
    Epilepsy & behavior : E&B, 2009, Volume: 14, Issue:4

    Overexpression of GABA(B)R1a receptors in mice (R1a(+)) results in an atypical absence seizure phenotype characterized by 3- to 6-Hz slow spike-and-wave discharges (SSWDs), reduced synaptic plasticity, and cognitive impairment. Here we tested the hypothesis that increased R1 expression causes atypical absence epilepsy and is not subunit specific. GABA(B)R1b receptors were overexpressed in mouse forebrain (R1b(+)) and confirmed by immunoblot and (3)H-CGP54626A autoradiography. The R1b(+) mice showed a reduction in hippocampal long-term potentiation and GABA(A) receptor-mediated inhibitory postsynaptic currents. R1b(+) mice manifested an electrographic, pharmacological, and behavioral phenotype consistent with atypical absence seizures, though less robust than R1a(+) in terms of SSWD duration and severity of cognitive impairment. These results suggest that abnormal GABA(B)R1b function plays a lesser role in the development of atypical absence epilepsy.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Autoradiography; Cognition Disorders; Disease Models, Animal; Electric Stimulation; Electroencephalography; Epilepsy, Absence; Excitatory Amino Acid Antagonists; Hippocampus; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Long-Term Potentiation; Maze Learning; Mice; Mice, Transgenic; Neurons; Organophosphorus Compounds; Patch-Clamp Techniques; Phenotype; Protein Binding; Receptors, GABA-B; Tritium; Valine

2009
Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats.
    Journal of applied physiology (Bethesda, Md. : 1985), 2008, Volume: 105, Issue:3

    N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin receptors are required for induction, but not maintenance, of pLTF. However, because NMDA and non-NMDA ionotropic glutamate receptors are directly involved in mediating the inspiratory drive to phrenic, hypoglossal, and intercostal motoneurons, we hypothesized that these receptors are required for both formation and maintenance of vLTF. vLTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O(2)) with 5-min normoxia intervals, was measured with plethysmography in conscious adult male Sprague-Dawley rats. Either (+/-)-2-amino-5-phosphonovaleric acid (APV; NMDA antagonist, 1.5 mg/kg) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA antagonist, 10 mg/kg) was systemically (ip) injected approximately 30 min before hypoxia. APV was also injected immediately after or 20 min after episodic hypoxia in additional groups. As control, vehicle was similarly injected in each rat 1-2 days before. Regardless of being injected before or after episodic hypoxia, vehicle did not alter vLTF ( approximately 23%), whereas APV eliminated vLTF while having little effect on baseline ventilation or hypoxic ventilatory response. In contrast, CNQX enhanced vLTF ( approximately 34%) while decreasing baseline ventilation. Collectively, these results suggest that activation of NMDA but not non-NMDA receptors is necessary for formation and maintenance of vLTF in awake rats.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Disease Models, Animal; Excitatory Amino Acid Antagonists; Heart Rate; Hypoxia; Long-Term Potentiation; Male; Motor Neurons; Neural Pathways; Pulmonary Ventilation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Respiratory Mechanics; Respiratory Muscles; Tidal Volume; Time Factors; Valine; Wakefulness

2008
Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, Oct-22, Volume: 28, Issue:43

    A growing body of evidence indicates that enhanced AMPA-mediated glutamate transmission in the core of the nucleus accumbens is critically involved in cocaine priming-induced reinstatement of drug seeking, an animal model of relapse. However, the extent to which increased glutamate transmission in the other major subregion of the nucleus accumbens, the shell, contributes to the reinstatement of cocaine seeking remains unclear. In the present experiments, administration of the AMPA/kainate receptor antagonist CNQX (0, 0.03, or 0.3 mug) into either the core or the shell of the nucleus accumbens before a systemic cocaine priming injection (10 mg/kg, i.p.) dose-dependently attenuated the reinstatement of drug seeking. Cocaine priming-induced reinstatement of cocaine seeking also was associated with increases in GluR2-pSer880 in the nucleus accumbens shell. The phosphorylation of GluR2 by PKC at Ser880 plays an important role in the trafficking of GluR2-containing AMPA receptors from the plasma membrane. The current results showed that administration of a cell-permeable peptide that disrupts GluR2 trafficking (Pep2-EVKI) into either the accumbens core or shell attenuated cocaine-induced reinstatement of drug seeking. Together, these findings indicate that changes in AMPA receptor-mediated glutamate transmission in both the nucleus accumbens core and shell are necessary for the reinstatement of drug seeking induced by a priming injection of cocaine. The present results also demonstrate that the reinstatement of cocaine seeking is associated with increases in the phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Analysis of Variance; Animals; Behavior, Animal; Cocaine; Cocaine-Related Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Food Preferences; Male; Nucleus Accumbens; Phosphorylation; Protein Transport; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Reinforcement Schedule; Reinforcement, Psychology; Self Administration; Serine

2008
Role for NMDA receptors in visceral nociceptive transmission in the anterior cingulate cortex of viscerally hypersensitive rats.
    American journal of physiology. Gastrointestinal and liver physiology, 2008, Volume: 294, Issue:4

    We have identified colorectal distension (CRD)-responsive neurons in the anterior cingulate cortex (ACC) and demonstrated that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization. In the present study, we confirmed that rostral ACC neurons of sensitized rats [induced by chicken egg albumin (EA)] exhibit enhanced spike responses to CRD. Simultaneous in vivo recording and reverse microdialysis of single ACC neurons showed that a low dose of glutamate (50 microM) did not change basal ACC neuronal firing in normal rats but increased ACC neuronal firing in EA rats from 18 +/- 2 to 32 +/- 3.8 impulses/10 s. A high dose of glutamate (500 microM) produced 1.95-fold and a 4.27-fold increases of ACC neuronal firing in sham-treated rats and in EA rats, respectively, suggesting enhanced glutamatergic transmission in the ACC neurons of EA rats. Reverse microdialysis of the 3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainite receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) reduced basal and abolished CRD-induced ACC neuronal firing in normal rats. In contrast, microdialysis of N-methyl-d-aspartate (NMDA) receptor antagonist AP5 had no effect on ACC neuronal firing in normal rats. However, AP5 produced 86% inhibition of ACC neuronal firing evoked by 50 mmHg CRD in the EA rats. In conclusion, ACC nociceptive transmissions are mediated by glutamate AMPA receptors in the control rats. ACC responses to CRD are enhanced in viscerally hypersensitive rats. The enhancement of excitatory glutamatergic transmission in the ACC appears to mediate this response. Furthermore, NMDA receptors mediate ACC synaptic responses after the induction of visceral hypersensitivity.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Anaphylaxis; Animals; Cerebral Cortex; Colonic Diseases; Disease Models, Animal; Egg Hypersensitivity; Egg Proteins; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hyperalgesia; Male; Microdialysis; Neuronal Plasticity; Pain Measurement; Pain Threshold; Pressure; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission

2008
Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy.
    Journal of neurophysiology, 2006, Volume: 95, Issue:4

    Clinical and experimental evidence indicates that the amygdala is involved in limbic seizures observed in patients with temporal lobe epilepsy. Here, we used simultaneous field and intracellular recordings from horizontal brain slices obtained from pilocarpine-treated rats and age-matched nonepileptic controls (NECs) to shed light on the electrophysiological changes that occur within the lateral nucleus (LA) of the amygdala. No significant differences in LA neuronal intrinsic properties were observed between pilocarpine-treated and NEC tissue. However, spontaneous field activity could be recorded in the LA of 21% of pilocarpine-treated slices but never from NECs. At the intracellular level, this network activity was characterized by robust neuronal firing and was abolished by glutamatergic antagonists. In addition, we could identify in all pilocarpine-treated LA neurons: 1) large amplitude depolarizing postsynaptic potentials (PSPs) and 2) a lower incidence of spontaneous hyperpolarizing PSPs as compared with NECs. Single-shock stimulation of LA networks in the presence of glutamatergic antagonists revealed a biphasic inhibitory PSP (IPSP) in both NECs and pilocarpine-treated tissue. The reversal potential of the early GABA(A) receptor-mediated component, but not of the late GABA(B) receptor-mediated component, was significantly more depolarized in pilocarpine-treated slices. Furthermore, the peak conductance of both fast and late IPSP components had significantly lower values in pilocarpine-treated LA cells. Finally, paired-pulse stimulation protocols in the presence of glutamatergic antagonists revealed a less pronounced depression of the second IPSP in pilocarpine-treated slices compared with NECs. Altogether, these findings suggest that alterations in both pre- and postsynaptic inhibitory mechanisms contribute to synaptic hyperexcitability of LA networks in epileptic rats.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Amygdala; Animals; Disease Models, Animal; Electrophysiology; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Hippocampus; Male; Matched-Pair Analysis; Nerve Net; Neural Inhibition; Neurons; Parahippocampal Gyrus; Picrotoxin; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, GABA-A

2006
Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Mar-15, Volume: 26, Issue:11

    The tottering (tg) mice have a mutation in the CaV2.1 (P/Q-type) voltage-dependent Ca2+ channel alpha(1)2.1 subunit gene. tg mice show not only cerebellar ataxia but also absence epilepsy, which begins at approximately 3 weeks of age and persists throughout life. Similarities in EEG and sensitivity to antiepileptic drugs suggest that tg mice are a good model for human absence epilepsy. Although imbalance between excitatory and inhibitory activity in the thalamocortical network is thought to contribute to the pathogenesis of absence epilepsy, the effect of the mutation on thalamocortical synaptic responses remains unknown. Here we showed imbalanced impairment of inhibitory synaptic responses in tg mice using brain slice preparations. Somatosensory thalamocortical projection makes not only monosynaptic glutamatergic connections but also disynaptic GABAergic connections, which mediate feedforward inhibition, onto layer IV neurons. In tg mice, IPSC amplitudes recorded from layer IV pyramidal cells of the somatosensory cortex in response to thalamic stimulation became disproportionately reduced compared with EPSC amplitudes at later developmental stages (postnatal days 21-30). Similar results were obtained by local stimulation of layer IV pyramidal neurons. However, IPSC reduction was not seen in layer V pyramidal neurons of epileptic tg mice or in layer IV pyramidal neurons of younger tg mice before the onset of epilepsy (postnatal days 14-16). These results showed that the feedforward inhibition from the thalamus to layer IV neurons of the somatosensory cortex was severely impaired in tg mice and that the impairment of the inhibitory synaptic transmission was correlated to the onset of absence epilepsy.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Afferent Pathways; Age Factors; Animals; Calcium Channel Blockers; Calcium Channels, N-Type; Disease Models, Animal; Electric Stimulation; Electroencephalography; Epilepsy, Absence; Evoked Potentials; Excitatory Postsynaptic Potentials; Homeostasis; Lidocaine; Mice; Mice, Inbred C57BL; Mice, Neurologic Mutants; omega-Agatoxin IVA; omega-Conotoxin GVIA; Patch-Clamp Techniques; Picrotoxin; Pyramidal Cells; Somatosensory Cortex; Synaptic Transmission; Thalamic Nuclei; Valine

2006
New role for spinal Stargazin in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated pain sensitization after inflammation.
    Journal of neuroscience research, 2006, Volume: 84, Issue:4

    Considerable evidence has demonstrated that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blockade has an antinociceptive effect on inflammatory pain. Stargazin (STG) is the first transmembrane protein known to associate with AMPA receptors and regulate their synaptic targeting. However, it is not known whether STG is involved in inflammatory pain processing by regulating AMPA receptor function. In the present study, we investigated the effect of knockdown of spinal STG on AMPA receptor-mediated pain sensitization after inflammation. Antisense technology was employed to knock down STG expression in the spinal cord. We show that STG was expressed and interacted with AMPA receptor subunit GluR2 in the spinal cord. Intrathecally injected STG antisense oligodeoxyribonucleotide (ODN) specifically decreased STG expression in the lumbar spinal cord and dose dependently inhibited formalin-induced inflammatory pain in the second phase. More important was our finding for the first time that this specific STG antisense ODN diminished AMPA (0.1 mug)-enhanced formalin pain and lost its effect if pretreated with AMPA receptor antagonist CNQX. Our results demonstrate a new role for STG in central sensitization of inflammatory pain by interacting with AMPA receptors in the spinal cord.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Calcium Channels; Disease Models, Animal; Disks Large Homolog 4 Protein; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fluorescent Antibody Technique; Gene Expression; Gene Expression Regulation; Immunoprecipitation; Inflammation; Intracellular Signaling Peptides and Proteins; Male; Membrane Proteins; Motor Activity; Oligonucleotides, Antisense; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Spinal Cord

2006
Increased seizure susceptibility of the hippocampus compared with the neocortex of the immature mouse brain in vitro.
    Epilepsia, 2005, Volume: 46, Issue:3

    The temporal lobe seems particularly susceptible to seizure activity. Mesial temporal lobe structures, including the hippocampus, have the lowest seizure thresholds in the brain. Conversely, thresholds in the frontal neocortex are significantly higher. The development of intact, isolated preparations of hippocampus and neocortex in vitro allows for study into mechanisms governing seizure threshold.. Epileptiform discharges in isolated mouse neocortical blocks were compared with the contralateral intact hippocampus, isolated from the same brain, by using the low-Mg2+, 4 aminopyridine (4-AP), and low-Ca2+ in vitro seizure models. The pharmacology of low Mg(2+)-induced ictal-like events (ILEs) generated in the hippocampus and neocortex was then compared by using glutamatergic antagonists DL-2-amino-5-phosphonovaleric acid (APV) and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and the Ca2+ channel antagonist, nifedipine.. Neocortical blocks generated both recurrent, spontaneous ILEs and interictal-like events under low-Mg2+ artificial CSF (aCSF) perfusion, distinct from those generated in the hippocampus. ILEs from the hippocampus displayed lower thresholds and longer durations as compared with isolated neocortical blocks. Similar results were obtained during 4-AP perfusion. Perfusion with low-Ca2+ ACSF did not produce stereotypical ILEs in the neocortical block, producing instead recurrent, slow depolarizations. Both ILEs and recurrent, slow depolarizations were produced in the hippocampus. Application of APV and nifedipine exacerbated low Mg(2+)-induced ILEs in the hippocampus but not the neocortex, indicating a distinct pharmacology for partial seizures of different brain regions.. The developing mouse hippocampus demonstrates increased ictogenesis compared with the developing neocortex in vitro, consistent with clinical observations and in vivo experimental models.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium Channel Blockers; Convulsants; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy, Temporal Lobe; Evoked Potentials; Excitatory Amino Acid Antagonists; Frontal Lobe; Functional Laterality; Hippocampus; Hypocalcemia; In Vitro Techniques; Magnesium Deficiency; Mice; Mice, Inbred C57BL; Neocortex; Nifedipine; Seizures; Synaptic Transmission

2005
Short-term effects of kainic acid on CA1 hippocampal interneurons differentially vulnerable to excitotoxicity.
    Epilepsia, 2005, Volume: 46, Issue:6

    We sought to identify the inhibitory interneurons of the rat hippocampal CA1 region selectively vulnerable in the kainic acid (KA) model of temporal lobe epilepsy and to determine whether their selective vulnerability could be due to differential short-term KA effects.. We quantified vulnerable interneurons in stratum oriens-alveus (O/A) by using immunohistochemistry for glutamic acid decarboxylase (GAD), parvalbumin (PV), and somatostatin (SS) after KA injections in rats, and then compared in normal slices the effects of KA on interneurons either in O/A (vulnerable to KA) or in strata radiatum and lacunosum-moleculare (R/LM) (resistant to KA) by using whole-cell recording and calcium imaging.. GAD-, PV- and SS-positive cells in O/A were decreased after KA treatment in P20 and P30 rats. Both short (1-min) and long (10-min) applications of KA produced similar tetrodotoxin (TTX)-insensitive membrane depolarization and decrease in input resistance in O/A and R/LM interneurons. KA responses were antagonized by CNQX and GYKI52466, suggesting AMPA receptor activation. KA also generated a similar increase in intracellular Ca2+ in O/A and R/LM interneurons, which was antagonized by CNQX and GYKI52466.. The selective vulnerability of GAD-, PV-, and SS-immunopositive O/A interneurons in the KA model may not arise from cell-specific short-term membrane effects or calcium responses induced by KA, but from other glutamate receptor-mediated excitotoxic processes.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Glutamate Decarboxylase; Hippocampus; Immunohistochemistry; In Vitro Techniques; Interneurons; Kainic Acid; Male; Neural Inhibition; Parvalbumins; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Somatostatin; Tetrodotoxin

2005
Anticonvulsant action of GABA in the high potassium-low magnesium model of ictogenesis in the neonatal rat hippocampus in vivo and in vitro.
    Journal of neurophysiology, 2005, Volume: 94, Issue:4

    Previous developmental studies in vitro suggested that the inhibitory neurotransmitter GABA exerts depolarizing and excitatory actions on the immature neurons and that depolarizing GABA is causally linked to ictal activity during the first weeks of postnatal life. However, remarkably little is known on the role of GABA in the generation of neonatal seizures in vivo. Here, using extracellular recordings from CA3 hippocampus, we studied the effects of GABA(A)-acting drugs on electrographic seizures induced by local intrahippocampal injection of the epileptogenic agents (high K(+)/low Mg(2+)) in the nonanesthetized rats in vivo and in the hippocampal slices in vitro during the second postnatal week (postnatal days P8-12). We found that in vivo, the induction of ictal-like events was facilitated by co-infusion of high-K(+)/low Mg(2+) together with the GABA(A) antagonist bicuculline or gabazine. Moreover, the infusion of bicuculline alone caused ictal-like activity in approximately 30% of cases. Co-infusion of the GABA(A) receptor agonist isoguvacine or the GABA(A)-positive allosteric modulator diazepam completely prevented high-K(+)/low Mg(2+)-induced seizures. In in vitro studies using hippocampal slices, we also found that high-K(+)/low Mg(2+) produced ictal activity that was exacerbated by bicuculline and gabazine and reduced by isoguvacine. Thus in the model of high-K(+)/low Mg(2+)-induced seizures both in in vivo and in vitro conditions, GABA, acting via GABA(A) receptors, has an anticonvulsant effect during the critical developmental period of enhanced excitability.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Bicuculline; Disease Models, Animal; Drug Interactions; Excitatory Amino Acid Antagonists; GABA Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Isonicotinic Acids; Lipoproteins; Magnesium; Membrane Potentials; Neurons; Patch-Clamp Techniques; Potassium; Pyridazines; Rats; Seizures

2005
Differential effects of glutamate receptor antagonists on dorsal horn neurons responding to colorectal distension in a neonatal colon irritation rat model.
    World journal of gastroenterology, 2005, Nov-07, Volume: 11, Issue:41

    To investigate and compare the effects of spinal D-(-)-2-amino-7-phosphonoheptanoic acid (AP-7) and 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX), two glutamate receptor antagonists, on the responses of dorsal horn neurons to colorectal distension (CRD) in adult rats exposed to neonatal colon irritation (CI).. Hypersensitive SD rats were generated by CI during postnatal days 8, 10 and 12. Experiments on adult rats were performed using extracellular single-unit recording. The effects of spinal application of AP-7 (0.001, 0.01, 0.1, 1 mmoL) were tested on the CRD-evoked neuronal responses in 16 controls and 17 CI rats. The effects of CNQX (0.2, 2, 5, 10 micromoL) were also tested on the CRD-evoked responses of 17 controls and 18 CI neurons.. (1) The average responses of lumbosacral neurons to all intensities of CRD in CI rats were significantly higher than those in control rats; (2) In control rats, AP-7 (0.01 mmoL) had no significant effect on the neuronal response to all intensities of CRD (20, 40, 60, 80 mmHg); while AP-7 (0.1 mmoL) inhibited the neuronal response to 80-mmHg CRD. By contrast, in CI rats, AP-7 (0.01-1 mmoL) attenuated the CRD-evoked neuronal responses to all distention pressures in a dose-dependent manner; (3) In control rats, CNQX (2 micromoL) had no significantly effect on the neuronal response to all intensities of CRD; however, CNQX (5 micromoL) significantly attenuated the responses to CRD in the 40-80 mmHg range. By contrast, CNQX (2-10 micromoL) significantly decreased the neuronal responses in CI rats to non-noxious and noxious CRD in a dose-dependent manner.. Our results suggest that spinal N-methyl-D-aspartate (NMDA) and non-NMDA receptors may contribute to the processing of central sensitivity in a neonatal CI rat model, but they may play different roles in it.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Catheterization; Colon; Disease Models, Animal; Excitatory Amino Acid Antagonists; Irritable Bowel Syndrome; Male; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Glutamate

2005
Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat.
    The Journal of pharmacology and experimental therapeutics, 2004, Volume: 310, Issue:1

    Intrathecal pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists blocks development of spinal sensitization in a number of pain models. In contrast, secondary mechanical allodynia evoked by thermal injury (52.5 degrees C for 45 s) applied to the hind paw of the rat is not blocked by intrathecal pretreatment with NMDA receptor antagonists. It is, however, blocked by antagonists to the non-NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (AMPA/KA) and calcium-permeable AMPA/KA receptors. These findings suggest a role for these receptors in the development of spinal sensitization. The present study used the same thermal injury model to assess the effects of the AMPA/KA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and specific calcium-permeable AMPA/KA receptor antagonists philanthotoxin (PHTx) and joro spider toxin (JST) when given as postinjury treatments. Intrathecal saline injection at 5 and 30 min postinjury had no effect on thermal injury-evoked allodynia as measured by calibrated von Frey filaments. In contrast, 36 nmol of CNQX given at either time point reversed allodynia. Intrathecal 13 nmol of PHTx or 9 nmol of JST (higher doses than that required for pretreatment) reversed allodynia at the 5-min time point, but neither drug was antiallodynic at the 30-min time point. Thus, secondary mechanical allodynia in this model is not maintained by calcium-permeable AMPA/KA receptors, but instead requires activation of calcium-impermeable AMPA/KA receptors. This finding supports a role for AMPA/KA receptor function in responses occurring during spinal sensitization.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Burns; Calcium; Disease Models, Animal; Excitatory Amino Acid Antagonists; Injections, Spinal; Kainic Acid; Motor Cortex; Pain; Pain Threshold; Rats; Receptors, AMPA; Receptors, Kainic Acid; Spider Venoms

2004
Increased excitability in cortico-striatal synaptic pathway in a model of paroxysmal dystonia.
    Neurobiology of disease, 2004, Volume: 16, Issue:1

    Dystonias are movement disorders whose pathomechanism is largely unknown. Dystonic dt(sz) hamsters represent a model of primary dystonias, where alterations of striatal interneuron density and sodium channel function in projection neurones were described. Here, using cortico-striatal slices, we explore whether also the communication between neocortex and striatum is altered in dt(sz) hamsters. Field and intracellular recordings were done in dorsomedial striatum. Electrical stimulation was used to mimic neocortical afferents. Neuronal characteristics, synaptic connections, input-output relations and short- and long-term plasticity were analysed. Regarding cellular properties, striatal neurons of affected animals showed no alterations. Concerning network properties, evoked responses at threshold stimulation were mediated by (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors. In dt(sz) slices, field responses, paired-pulse accentuation and LTP were larger than in control, possibly by an increase in presynaptic release probability at glutamatergic synapses. In summary, the study indicates that a change of cortico-striatal communication is involved in the manifestation of paroxysmal dystonia in the dt(sz) mutant.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Cerebral Cortex; Corpus Striatum; Cricetinae; Disease Models, Animal; Dystonia; Female; Male; Receptors, AMPA; Receptors, Kainic Acid; Signal Transduction; Synapses

2004
Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus.
    Hippocampus, 2004, Volume: 14, Issue:8

    This study presents a model of chronic, recurrent, spontaneous seizures in the intact isolated hippocampal preparation from mice aged P8-P25. Field activity from the CA1 pyramidal cell layer was recorded and recurrent, spontaneous seizure-like events (SLEs) were observed in the presence of low Mg2+ (0.25 mM) artificial cerebrospinal fluid (ACSF). Hippocampi also showed interictal epileptiform discharges (IEDs) of 0.9-4.2 Hz occurring between seizures. No age-specific differences were found in SLE occurrence (2 SLEs per 10 min, on average), duration, and corresponding frequencies. After long exposure to low Mg2+ ACSF (>3 h), SLEs were completely reversible within minutes with the application of normal (2 mM Mg2+) ACSF. The AMPA antagonist, CNQX, blocked all epileptiform activity, whereas the NMDA antagonist, APV, did not. The gamma-aminobutyric acid (GABA)A antagonist, bicuculline, attenuated and fragmented SLEs, implicating interneurons in SLE generation. The L-type Ca2+ blocker, nifedipine, enhanced epileptiform activity. Analysis of dual site recordings along the septotemporal hippocampus demonstrated that epileptiform activity began first in the temporal pole of the hippocampus, as illustrated by disconnection experiments. Once an SLE had been established, however, the septal hippocampus was sometimes seen to lead the epileptiform activity. The whole hippocampus with intact local circuitry, treated with low Mg2+, provides a realistic model of recurrent spontaneous seizures, which may be used, in normal and genetically modified mice, to study the dynamics of seizures and seizure evolution, as well as the mechanisms of action of anti-epileptic drugs and other therapeutic modalities.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Age Factors; Animals; Calcium Channel Blockers; Disease Models, Animal; Epilepsy; Excitatory Amino Acid Antagonists; GABA Antagonists; Hippocampus; Magnesium; Magnesium Deficiency; Mice; Mice, Inbred C57BL; Neural Pathways; Neurons; Organ Culture Techniques; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Recurrence

2004
Sensitivity of thalamic GABAergic currents to clonazepam does not differ between control and genetic absence epilepsy rats.
    Brain research, 2004, Nov-12, Volume: 1026, Issue:2

    Mutations in GABA-A receptor subunits have been reported in a number of idiopathic generalized epilepsies including childhood absence epilepsy. One of these mutations is located within a high-affinity benzodiazepine-binding domain, and clonazepam is clinically used as an anti-absence drug. The intrathalamic loop consisting of the GABAergic neurons of the nucleus reticularis thalami (NRT) and the thalamocortical (TC) neurons of sensory thalamic nuclei plays an essential role in spike and wave discharges. In a well-established genetic model of absence epilepsy (Genetic Absence Epilepsy rat from Strasbourg, GAERS), systemic injections of benzodiazepines have been shown to suppress spike-and-waves discharges. The aim of this study, therefore, was to determine whether the sensitivity of GABAergic synaptic currents to clonazepam in NRT and TC neurons was different in GAERS and non-epileptic control (NEC) rats. In both pre-seizure GAERS and NEC clonazepam (100 nM) had no effect on the mIPSCs recorded from TC neurons while it increased the decay time constant of the mIPSCs recorded in NRT neurons by a similar amount in GAERS (54.5+/-5%) and NEC (50.7+/-5%). Similar results have been obtained in the presence of 100 microM Cd2+, showing that the effect of clonazepam did not occur via modulation of voltage-activated Ca2+ currents. These results are relevant to understand that in GAERS, the clonazepam anti-absence actions cannot be fully explained by the enhancement of the intra-NRT inhibition and the modulation of the GABAergic synaptic currents in other brain areas, in particular the cortex, must be taken into consideration.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Anticonvulsants; Cadmium; Clonazepam; Disease Models, Animal; Drug Interactions; Electric Stimulation; Epilepsy, Absence; Excitatory Amino Acid Antagonists; Female; gamma-Aminobutyric Acid; In Vitro Techniques; Male; Neural Inhibition; Neurons; Patch-Clamp Techniques; Rats; Rats, Mutant Strains; Synapses; Thalamus

2004
Peripheral vestibular disorder induced by (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA).
    Neuroscience letters, 2004, Nov-16, Volume: 371, Issue:1

    An intracochlear infusion of (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) was done in guinea pigs with a syringe pump and peripheral vestibular disorder was induced. Spontaneous nystagmus toward the intact side reached a peak 9 h after the infusion and disappeared within 18 h. As a control, artificial perilymph was infused and animals had no nystagmus. The nystagmus frequency was decreased by simultaneous infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a dose-dependent manner. In the animals treated with AMPA or AMPA + CNQX, caloric tests performed 1 week after treatment revealed a partial dysfunction of vestibular periphery. These results indicate that the nystagmus observed is induced by AMPA via AMPA receptors and that AMPA-induced vestibular disorder is partial. This animal model may be a candidate for pharmacological study of inner ear diseases induced by glutamate excitotoxicity.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Caloric Tests; Disease Models, Animal; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Guinea Pigs; Male; Nystagmus, Pathologic; Vestibular Diseases

2004
Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2003, Volume: 28, Issue:9

    Group II mGlu receptor agonists (eg LY379268 and LY354740) have been shown to reverse many of the behavioral responses to PCP as well as glutamate release elicited by PCP and ketamine. In the present set of experiments, we used in vivo microdialysis to show that, in addition to reversing PCP- and ketamine-evoked glutamate release, group II mGlu receptor stimulation also prevents ketamine-evoked norepinephrine (NE) release. Pretreating animals with the mixed 2/3 metabotropic glutamate (mGlu2/3) receptor agonist LY379268 (0.3-10 mg/kg) dose-dependently inhibited ketamine (25 mg/kg)-evoked NE release in the ventral hippocampus (VHipp). Ketamine hyperactivity was also reduced in a similar dose range. Following our initial observation on NE release, we conducted a series of microinjection experiments to reveal that the inhibitory effects of LY379268 on VHipp NE release may be linked to glutamate transmission within the medial prefrontal cortex. Finally, we were able to mimic the inhibitory effects of LY379268 on ketamine-evoked NE release by using a novel mGlu2 receptor selective positive modulator. (+/-) 2,2,2-Trifluoroethyl [3-(1-methyl-butoxy)-phenyl]-pyridin-3-ylmethyl-sulfonamide (2,2,2-TEMPS, characterized through in vitro GTPgammaS binding) at a dose of 100 mg/kg significantly reduced the NE response. Together, these results demonstrate a novel means to suppress noradrenergic neurotransmission (ie by activating mGlu2 receptors) and may, therefore, have important implications for neuropsychiatric disorders in which aberrant activation of the noradrenergic system is thought to be involved.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Analysis of Variance; Animals; Area Under Curve; Binding Sites; Bridged Bicyclo Compounds, Heterocyclic; Chromatography, High Pressure Liquid; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Guanosine 5'-O-(3-Thiotriphosphate); Hippocampus; Humans; Hyperkinesis; In Vitro Techniques; Ketamine; Male; Microdialysis; Motor Activity; Norepinephrine; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Metabotropic Glutamate; Schizophrenia; Serotonin; Sulfur Isotopes; Time Factors; Trifluoroethanol; Xanthenes

2003
Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo.
    The European journal of neuroscience, 2003, Volume: 18, Issue:7

    Neuronal activity is thought to play an important role in refining patterns of synaptic connectivity during development and in the molecular maturation of synapses. In experiments reported here, a 2-week infusion of tetrodotoxin (TTX) into rat hippocampus beginning on postnatal day 12 produced abnormal synchronized network discharges in in vitro slices. Discharges recorded upon TTX washout were called 'minibursts', owing to their small amplitude. They were routinely recorded in area CA3 and abolished by CNQX, an AMPA receptor antagonist. Because recurrent excitatory axon collaterals remodel and glutamate receptor subunit composition changes after postnatal day 12, experiments examined possible TTX-induced alterations in recurrent excitation that could be responsible for network hyperexcitability. In biocytin-labelled pyramidal cells, recurrent axon arbors were neither longer nor more highly branched in the TTX infusion site compared with saline-infused controls. However, varicosity size and density were increased. Whereas most varicosities contained synaptophysin and synaptic vesicles, many were not adjacent to postsynaptic specializations, and thus failed to form anatomically identifiable synapses. An increased pattern of excitatory connectivity does not appear to explain network hyperexcitability. Quantitative immunoblots also indicated that presynaptic markers were unaltered in the TTX infusion site. However, the postsynaptic AMPA and NMDA receptor subunits, GluR1, NR1 and NR2B, were increased. In electrophysiological studies EPSPs recorded in slices from TTX-infused hippocampus had an enhanced sensitivity to the NR2B containing NMDA receptor antagonist, ifenprodil. Thus, increases in subunit protein result in alterations in the composition of synaptic NMDA receptors. Postsynaptic changes are likely to be the major contributors to the hippocampal network hyperexcitability and should enhance both excitatory synaptic efficacy and plasticity.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Anesthetics, Local; Animals; Animals, Newborn; Axons; Disease Models, Animal; Epilepsy; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; Immunoblotting; Immunohistochemistry; In Vitro Techniques; Lysine; Membrane Potentials; Microscopy, Confocal; Microscopy, Electron; Nerve Net; Patch-Clamp Techniques; Piperidines; Pyramidal Cells; Rats; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptophysin; Tetrodotoxin; Time Factors

2003
Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    The Journal of physiology, 2001, Apr-01, Volume: 532, Issue:Pt 1

    Chronically epileptic rats, produced by prior injection of pilocarpine, were used to investigate whether changes in intrinsic neuronal excitability may contribute to the epileptogenicity of the hippocampus in experimental temporal lobe epilepsy (TLE). Paired extra-/intracellular electrophysiological recordings were made in the CA1 pyramidal layer in acute hippocampal slices prepared from control and epileptic rats and perfused with artificial cerebrospinal fluid (ACSF). Whereas orthodromic activation of CA1 neurons evoked only a single, stimulus-graded population spike in control slices, it produced an all-or-none burst of population spikes in epileptic slices. The intrinsic firing patterns of CA1 pyramidal cells were determined by intrasomatic positive current injection. In control slices, the vast majority (97%) of the neurons were regular firing cells. In epileptic slices, only 53% the pyramidal cells fired in a regular mode. The remaining 47% of the pyramidal cells were intrinsic bursters. These neurons generated high-frequency bursts of three to six spikes in response to threshold depolarizations. A subgroup of these neurons (10.1% of all cells) also burst fired spontaneously even after suppression of synaptic activity. In epileptic slices, burst firing in most cases (ca 70%) was completely blocked by adding the Ca2+ channel blocker Ni2+ (1 mM) to, or removing Ca2+ from, the ACSF, but not by intracellular application of the Ca2+ chelater 1,2-bis(o-aminophenoxy)ethane-N,N,N ',N '-tetra-acetic acid (BAPTA), suggesting it was driven by a Ca2+ current. Spontaneously recurring population bursts were observed in a subset of epileptic slices. They were abolished by adding 2 M 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) to the ACSF, indicating that synaptic excitation is critical for the generation of these events. All sampled pyramidal cells fired repetitively during each population burst. The firing of spontaneously active bursters anteceded the population discharge, whereas most other pyramidal cells began to fire conjointly with the first population spike. Thus, spontaneous bursters are likely to be the initiators of spontaneous population bursts in epileptic slices. The dramatic up-regulation of intrinsic bursting in CA1 pyramidal cells, particularly the de novo appearance of Ca2+-dependent bursting, may contribute to the epileptogenicity of the hippocampus in the pilocarpine model of TLE. These findings have important implications for the pharmacologi

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Chelating Agents; Disease Models, Animal; Egtazic Acid; Electric Stimulation; Electrophysiology; Epilepsy, Temporal Lobe; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; Humans; In Vitro Techniques; Male; Nickel; Pilocarpine; Pyramidal Cells; Rats

2001
Influence of capsaicin cream in rats with peripheral neuropathy.
    Pharmacological research, 2001, Volume: 44, Issue:2

    We investigated the effect of topical application of capsaicin cream on withdrawal latency in the hind foot of rat in response to radiant heat in an experimental model of neuropathic pain. A neuropathic state was induced by loose ligation of the sciatic nerve with chromic gut suture. A marked thermal hyperalgesia was observed in response to heat stimulus applied to the operated side from 3 days through 2 weeks, followed by a gradual return to the control level by 35 days after surgery. Capsaicin cream applied to both the bilateral hind instep and sole once a day for a continuous period of 2 weeks or 4 weeks alleviated thermal hyperalgesia in a dose-dependent manner. A remarkable effect was observed 2 weeks after the start of the application and this effect proved to be reversible. On the other hand, in sham-operated animals when capsaicin cream was applied once daily from day 7 after the sham operation, from 1 day through 3 weeks following capsaicin application, withdrawal latency of the sham-operated paws of the capsaicin-treated group was significantly increased as compared to that of the vehicle cream-treated group. The effects of antagonists of glutamate receptor and tachykinin receptors were investigated 7 days post surgery. Pretreatment with MK-801 (0.5 mg kg(-1), i.p.), but not with CNQX (0.5 mg kg(-1), i.p.), reversed the thermal hyperalgesia following nerve injury. Neither of RP67580 (1--10 mg kg(-1), i.p.) nor SR48968 (1--10 mg kg(-1), i.p.) had any effect on the withdrawal latency in the injured and non-injured hind paw. These results suggest that although the manifestation of effectiveness may be delayed by changes in networks of neurotransmitters related to the nociceptive pathways following nerve injury, longer-term repetitive application of capsaicin cream has a significant therapeutic effect on subjects with painful peripheral neuropathy.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics; Animals; Benzamides; Capsaicin; Carrageenan; Disease Models, Animal; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Hyperalgesia; Indoles; Isoindoles; Male; Neuroprotective Agents; Pain; Peripheral Nervous System Diseases; Piperidines; Postoperative Period; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Substance Withdrawal Syndrome; Time Factors

2001
Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis.
    Neuroscience, 1999, Volume: 88, Issue:1

    The cellular mechanisms involved in the generation of spontaneous epileptiform potentials were investigated in the pirifom cortex of the in vitro isolated guinea-pig brain. A single, unilateral injection of bicuculline (150-200 nmol) in the anterior piriform cortex induced locally spontaneous interictal spikes that recurred with a period of 8.81+/-4.47 s and propagated caudally to the ipsi- and contralateral hemispheres. Simultaneous extra- and intracellular recordings from layer II and III principal cells showed that the spontaneous interictal spike correlates to a burst of action potentials followed by a large afterdepolarization. Intracellular application of the sodium conductance blocker, QX-314 (80 mM), abolished bursting activity and unmasked a high-threshold slow spike enhanced by the calcium chelator EGTA (50 mM). The slow spike was abolished by membrane hyperpolarization and by local perfusion with 2 mM cadmium. The depolarizing potential that followed the primary burst was reduced by arterial perfusion with the N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (100-200 microM). The non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), completely and reversibly blocked the spontaneous spikes. The interictal spikes were terminated by a large afterpotential blocked either by intracellular QX-314 (80 mM) or by extracellular application of phaclofen and 2-hydroxysaclofen (10 and 4 mM, respectively). The present study demonstrates that, in an acute model of epileptogenesis, spontaneous interictal spikes are fostered by a primary burst of fast action potentials that ride on a regenerative high-threshold, possibly calcium-mediated spike, which activates a recurrent, glutamate-mediated potential responsible for the entrainment of adjacent and remote cortical regions. The bursting activity is controlled by a GABA(B) receptor-mediated inhibitory synaptic potential.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Acute Disease; Animals; Bicuculline; Brain; Cerebral Cortex; Disease Models, Animal; Epilepsies, Partial; Functional Laterality; Glutamic Acid; Guinea Pigs; In Vitro Techniques; Lidocaine; Membrane Potentials; Reaction Time; Synaptic Transmission

1999
N-methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat.
    Neuroscience letters, 1999, Apr-23, Volume: 265, Issue:3

    We examined the effects of blockers of N-methyl-D-asparate (NMDA) and +/- -alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors on the maintenance of self-sustaining status epilepticus (SSSE) induced in rats by brief intermittent electrical stimulation of the perforant path (PPS). Blocking of NMDA receptor at the PCP site by MK-801 (0.5 mg/kg, i.p.) or ketamine (10 mg/kg, i.p.) as well as at the glycine allosteric site by intrahippocampal 5,7-dichlorokynurenic acid (5,7-DCK, 10 nmol), rapidly and irreversibly aborted both behavioral and electrographic manifestation of SSS. Intrahippocampal injection of the AMPA/kainate receptor blocker 6-cyano7-nitroquinixaline-3-dione (CNQX, 10 nmol) transiently suppressed seizures, which reappeared 4-5 h later. We suggest that the maintenance phase of SSSE depends on activation of NMDA receptors and that NMDA receptor blockers may be a promising class of compounds for the treatment of status epilepticus.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Anticonvulsants; Disease Models, Animal; Dizocilpine Maleate; Electric Stimulation; Excitatory Amino Acid Antagonists; Hippocampus; Ketamine; Kynurenic Acid; Male; Perforant Pathway; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Status Epilepticus

1999
Involvement of peripheral NMDA and non-NMDA receptors in development of persistent firing of spinal wide-dynamic-range neurons induced by subcutaneous bee venom injection in the cat.
    Brain research, 1999, Oct-09, Volume: 844, Issue:1-2

    To study the roles of peripheral excitatory amino acids receptor subtypes N-methyl-D-aspartate (NMDA) and non-NMDA receptors in persistent nociception, extracellular single unit recording technique was used to assess the effects of a single dose NMDA and non-NMDA receptor antagonists, AP(5) (5-aminophosphonovaleric acid) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) or DNQX (6,7-dinitroquinoxaline-2,3-dione), on s.c. bee venom-induced increase in firing of wide-dynamic-range (WDR) neurons in the spinal dorsal horn of the urethane-chloralose anesthetized cats. Subcutaneous bee venom injection into the cutaneous receptive field resulted in a single phase of increased firing of WDR neurons over the background activity for more than 1 h. Local pre-administration of AP(5) (200 microg/100 microl) or CNQX (8.3 microg/100 microl) into the bee venom injection site produced 94% (1.01+/-0.96 spikes/s, n=5) or 76% (2.97+/-0.58 spikes/s, n=4) suppression of the increased neuronal firing when compared with local saline (16.32+/-4.55 spikes/s, n=10) or dimethyl sulfoxide (DMSO) (12.37+/-6.36 spikes/s, n=4) pre-treated group, respectively. Local post-administration of the same dose of AP(5) produced a similar result to the pre-treatment group with a 67% inhibition of the mean firing rate, however, the same treatment with CNQX and even a higher dose of DNQX (100 microg/100 microl) did not produce any inhibition of the neuronal firing induced by s.c. bee venom injection (DNQX vs. DMSO: 23.91+/-0. 25 vs. 22.14+/-0.04 spikes/s, P=0.0298, n=5). In the control experiments, local pre-administration of the same dose of AP(5) or CNQX into a region on the contralateral hindpaw symmetrical to the bee venom injection site produced no significant influence on the increased firing of the WDR neurons [contralateral AP(5) vs. saline: 14.17+/-6.27 spikes/s (n=5) vs. 16.32+/-4.55 spikes/s (n=10), P0.05; contralateral CNQX vs. DMSO: 12.85+/-6.38 spikes/s (n=4) vs. 12. 37+/-6.36 spikes/s (n=4), P0.05], implicating that the suppressive action of local AP(5) or CNQX was not the result of systemic effects. The present results suggest that activation of the peripheral NMDA receptors is involved in both induction and maintenance, while activation of non-NMDA receptors is only involved in induction, but not in the maintenance of persistent firing of the dorsal horn WDR neurons induced by s.c. bee venom injection.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Bee Venoms; Cats; Disease Models, Animal; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Injections, Subcutaneous; Male; N-Methylaspartate; Nociceptors; Pain; Posterior Horn Cells; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate

1999
Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve.
    Proceedings of the National Academy of Sciences of the United States of America, 1998, Aug-18, Volume: 95, Issue:17

    Macroglial cells express ionotropic glutamate receptors. In the adult optic nerve, reverse transcription-PCR showed that the native receptors are formed by subunits belonging to the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate classes. Because activation of AMPA and kainate receptors can be toxic to oligodendrocytes in vitro, I examined the nature of the damage caused by kainate, an agonist of both receptor classes, applied directly onto the optic nerve. Acute infusion or chronic slow delivery of the agonist caused massive nerve damage that was more extensive in the latter. Interestingly, chronic delivery also produced inflammation and demyelination in well circumscribed areas of the nerve, together with other pathological features that closely resemble those observed in multiple sclerosis patients. Acute and chronic kainate lesions were both prevented by the non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. However, GYKI53655, a specific AMPA receptor antagonist, did not significantly reduce the size of the lesion, suggesting that the kainate toxicity was mainly mediated through activation of kainate-preferring glutamate receptors. These observations suggest that alterations in glutamate signaling may be detrimental to oligodendrocytes and may be involved in the pathogenesis of multiple sclerosis and other demyelinating diseases.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cell Death; Demyelinating Diseases; Disease Models, Animal; Excitatory Amino Acid Agonists; Humans; Kainic Acid; Multiple Sclerosis; Myelin Sheath; Oligodendroglia; Optic Nerve; Optic Nerve Injuries; Polymerase Chain Reaction; Rats; Receptors, AMPA; Receptors, Kainic Acid

1998
Shortened-duration GABA(A) receptor-mediated synaptic potentials underlie enhanced CA1 excitability in a chronic model of temporal lobe epilepsy.
    Neuroscience, 1997, Volume: 80, Issue:4

    Intracellular recording techniques were used to examine GABA(A) receptor-mediated synaptic inhibition in pyramidal cells of the CA1 region of the rat hippocampus in the post-self sustaining limbic status epilepticus model of temporal lobe epilepsy. Orthodromically evoked, monosynaptic inhibitory postsynaptic potentials were recorded in vitro following pharmacological blockade of ionotropic glutamate and GABA(B) receptors. Inhibitory postsynaptic potentials from epileptic tissue were kinetically altered relative to controls; both the 10-90% rise-time and width (measured at half-maximum amplitude) were reduced by approximately 50% resulting in significant shortening of duration. The degree of pyramidal cell hyperexcitability, assessed before pharmacological treatment as the number of action potentials evoked by maximum intensity afferent stimulation, correlated significantly with the magnitude of synaptic potential duration reduction determined following blockade of glutamatergic neurotransmission. Bath application of the benzodiazepine type 1 receptor agonist zolpidem reduced post-self sustaining limbic status epilepticus CA1 pyramidal cell hyperexcitability substantially (but not completely) via a marked increase in inhibitory postsynaptic potential area. Post-self-sustaining limbic status epilepticus inhibitory postsynaptic potentials which exhibited the most pronounced shortening were augmented by zolpidem to a greater degree than longer duration synaptic potentials. In contrast, zolpidem-induced augmentation of control inhibitor, postsynaptic potential area was much less robust. It is suggested that a deficiency in post-self-sustaining limbic status epilepticus GABA(A) receptor-mediated synaptic inhibition contributes to a state of partial disinhibition which is a major factor in enhanced CA1 excitability in chronic limbic epilepsy. Possible mechanisms underlying post-self-sustaining limbic status epilepticus kinetic abnormalities are discussed.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; Evoked Potentials; GABA Antagonists; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; Hippocampus; Hypnotics and Sedatives; Male; Phosphinic Acids; Propanolamines; Pyramidal Cells; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, GABA-B; Regression Analysis; Synapses; Zolpidem

1997
Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1996, Jun-15, Volume: 16, Issue:12

    Application of 4-aminopyridine (4AP, 50 microM) to combined slices of adult rat hippocampus-entorhinal cortex-induced ictal and interictal epileptiform discharges, as well as slow field potentials that were abolished by the mu-opioid agonist [D-Ala2,N-Me-Phe4,Gly-ol5] enkephalin (DAGO, 10 microM) or the GABAA receptor antagonist bicuculline methiodide (BMI, 10 microM); hence, they represented synchronous GABA-mediated potentials. Ictal discharges originated in the entorhinal cortex and propagated to the hippocampus, whereas interictal activity of CA3 origin was usually recorded in the hippocampus. The GABA-mediated potentials had no fixed site of origin or modality of propagation; they closely preceded (0.2-5 sec) and thus appeared to initiate ictal discharges. Only ictal discharges were blocked by the antagonist of the NMDA receptor 3,3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP, 10 microM), whereas the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) abolished all epileptiform activities. The GABA-mediated potentials continued to occur synchronously in all regions even after concomitant application of CNQX and CPP. [K+]o elevations were recorded in the entorhinal cortex during the ictal discharge (peak values = 13.9 +/- 0.9 mM) and the synchronous GABA-mediated potentials (peak values = 4.2 +/- 0.1 mM); the latter increases were presumably attributable to postsynaptic GABAa-receptor activation because they were abolished by DAGO or BMI. Their role in initiating ictal activity was demonstrated by using DAGO, which abolished both GABA-mediated synchronous potentials and ictal discharges. These data indicate that NMDA-mediated ictal discharges induced by 4AP originate in the entorhinal cortex; such a conclusion is in line with clinical evidence obtained in temporal lobe epilepsy patients. 4AP also induces GABA-mediated potentials that spread within the limbic system when excitatory transmission is blocked and may play a role in initiating ictal discharge by increasing [K+]o.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics; Animals; Disease Models, Animal; Electrophysiology; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Entorhinal Cortex; Epilepsy; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; Limbic System; Male; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Piperazines; Potassium; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Serotonin Receptor Agonists

1996
Analysis of the kinetics of synaptic inhibition points to a reduction in GABA release in area CA1 of the genetically epileptic mouse, El.
    Epilepsy research, 1996, Volume: 26, Issue:1

    In order to determine whether changes in synaptic inhibition are involved in chronic models of epilepsy, it is necessary to understand the factors which determine the kinetics of fast gamma-aminobutyric acid (GABA)ergic inhibition. For this purpose, we analyzed the decaying phase of isolated inhibitory postsynaptic currents (IPSC) in rats CA1 pyramidal cells. Reduction of GABA release (by reducing [Ca2+]o or paired-pulse stimulation) or blockade of GABA uptake (with tiagabine) led to the conclusion that small changes in the amount of GABA available for postsynaptic binding have little effect on the peak amplitude, but have marked effect on the duration of the IPSC. We then studied isolated GABAA receptor-mediated inhibition in area CA1 of the El mouse strain, which is genetically predisposed to epilepsy. Results were compared with the non-epileptogenic mother strain, ddY. Inhibitory postsynaptic potentials (IPSPs) in El mice (IPSPEl) were not significantly different in amplitude of those from ddY mice (IPSPddY). However, the rise-time and duration of IPSPEl were respectively about 25% and 50% shorter than those of IPSPddY. With appropriate pharmacological manipulation of GABA release or uptake, IPSPEl could be made to resemble the IPSPddY and vice versa. It is concluded that the synaptic release of GABA in area CA1 of the El mouse is decreased compared to that of the ddY mouse.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Anticonvulsants; Baclofen; Disease Models, Animal; Electric Stimulation; Epilepsy; gamma-Aminobutyric Acid; Hippocampus; Interneurons; Mice; Mice, Mutant Strains; Neural Inhibition; Nipecotic Acids; Receptors, GABA; Species Specificity; Synaptic Transmission; Tiagabine

1996
Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS.
    Epilepsy research, 1996, Volume: 26, Issue:1

    Genetic absence epilepsy rats from Strasbourg (GAERS) have non-convulsive generalized seizures associated with spike-wave (SW) discharges, which are due to a hyperexcitable state of the thalamo-cortico circuits involving the reticular thalamic nucleus (nRt). Investigation of the primary genetically-determined defect responsible for GAERS epilepsy revealed the following abnormalities: (1) increased effectiveness of AMPA receptors dependent glutamate-mediated transmission; (2) impairment of GABA-mediated transmission in the neocortex; (3) increased amplitude of the voltage-dependent low-threshold Ca2(+)-current (I(T)) in the nRt. The maturational profile of these abnormalities supports the conclusion that the abnormality in the I(T) current in the nRt is the primary genetically-determined defect, which may secondarily induce the other changes found in the neocortex and thalamus of GAERS.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebral Cortex; Disease Models, Animal; Electric Stimulation; Epilepsy, Absence; gamma-Aminobutyric Acid; Neural Pathways; Pyramidal Cells; Rats; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Thalamic Nuclei; Thalamus

1996
Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin.
    Epilepsy research, 1996, Volume: 26, Issue:1

    Blocking inhibition provides one of the most common experimental means of triggering epileptic activity in hippocampus and neocortex. However, it has proved much more difficult to show that chronic models of epilepsies are due to disinhibition. One problem is knowing how much inhibition needs to be blocked to provide a sufficient mechanism for epileptic activity. We have found that inhibitory (GABAA) transmission, estimated from evoked monosynaptic IPSCs, must be reduced to 17% of their control amplitude (by 4-7 microM bicuculline) before hippocampal slices generate all-or-none epileptic discharges. Similar estimates of inhibition in chronic epileptic foci induced by intrahippocampal injection of tetanus toxin showed that monosynaptic IPSCs dropped to 10% of control in the injected hippocampus during the first 2 weeks after injection. At all other stages of the active epileptic foci in the two hippocampi the reduction in IPSCs was not alone sufficient for epileptic activity; at 4-6 weeks IPSCs were normal despite continued epileptic activity. One likely mechanism for the late epileptic activity is a reduction of either the intrinsic excitability, or the synaptic excitation, of inhibitory interneurons so they fail to be recruited normally. Alternative mechanisms include the formation of new excitatory connections, as found at modest levels in the dentate gyrus. Several mechanisms may play a part in chronic foci such as those induced by tetanus toxin, either acting together, or sequentially during the progression of the epileptic focus.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Cerebral Cortex; Disease Models, Animal; Epilepsy; Functional Laterality; gamma-Aminobutyric Acid; Hippocampus; Interneurons; Male; Neural Inhibition; Rats; Rats, Sprague-Dawley; Synaptic Transmission; Tetanus Toxin

1996
The role of glutamate and GABA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat.
    The Journal of physiology, 1995, Apr-15, Volume: 484 ( Pt 2)

    1. In rats anaesthetized with pentobarbitone sodium, a unilateral acute arthritis was produced by the injection of kaolin and carrageenan into one knee-joint cavity. Four hours after injection, the medial articular nerve (MAN) was sectioned distally and recordings obtained from the proximal stump of the nerve. 2. Centrifugally conducted action potentials were recorded from the cut MAN following the development of arthritis. Acute dorsal rhizotomy, but not sympathectomy, prevented the action potentials, and so it is concluded that the action potentials represent dorsal root reflexes. 3. Central administration of either the GABAA receptor antagonist, bicuculline, or the non-NMDA receptor antagonist, CNQX, also prevented dorsal root reflexes in the MAN. 4. Neither the GABAB receptor antagonist, CGP35348, nor the NMDA receptor antagonist, AP7, altered the dorsal root reflexes in the MAN. 5. It is concluded that arthritis causes excess primary afferent depolarization in the dorsal horn of the spinal cord leading to dorsal root reflexes. It is proposed that these dorsal root reflexes contribute to the inflammation.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Arthritis; Bicuculline; Disease Models, Animal; GABA-B Receptor Antagonists; Inflammation; Male; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, Glutamate; Spinal Nerve Roots; Time Factors

1995
An in vitro model of persistent epileptiform activity in neocortex.
    Epilepsy research, 1995, Volume: 21, Issue:3

    An in vitro model of persistent epileptiform activity was developed to study the mechanisms involved in epileptogenesis. Extracellular recordings were obtained from rat neocortical slices exposed to magnesium-free solution for 2 h. During exposure to magnesium-free solution spontaneous epileptiform activity consisting of interictal bursting and ictal-like discharges were observed. Interestingly, this activity persisted for hours after the slices were returned to magnesium-containing control solution. The N-methyl-D-aspartate (NMDA) receptor antagonist CPP prevented the development of the epileptiform activity, while the non-NMDA receptor antagonist CNQX abolished the epileptiform discharge that persisted after slices were returned to control solution. These findings suggest there are two distinct phases in the development of epileptic activity in this model, namely, induction (mediated by NMDA receptor activity) and maintenance (supported largely by non-NMDA receptor activity). The similarities and possible parallels between the mechanisms underlying this epileptogenesis and other forms of use-dependent modification of synaptic excitation, such as long-term potentiation, are discussed. This in vitro model of neocortical epileptogenesis may provide insights into the events underlying the development of clinical partial epilepsy.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebral Cortex; Disease Models, Animal; Epilepsy; In Vitro Techniques; Magnesium; Rats; Rats, Sprague-Dawley; Time Factors

1995
Spinal cord amino acid release and content in an arthritis model: the effects of pretreatment with non-NMDA, NMDA, and NK1 receptor antagonists.
    Brain research, 1993, Nov-05, Volume: 627, Issue:1

    An experimental arthritis, induced by injection of the knee joint with kaolin and carrageenan, results in guarding of and decreased weight bearing on the limb. At the time of injection, a transient increased release of all amino acids examined is measurable in samples collected by microdialysis. A second and prolonged increase of aspartate (ASP), glutamate (GLU), and glutamine (GLN) concentrations follows after 3 h. The increased release at time of injection is blocked by microdialysis application of a non-N-methyl-D-aspartate (non-NMDA) or an NMDA receptor antagonist, and the release of ASP, GLU, and GLN in the late phase is blocked by pretreatment with a non-NMDA (CNQX), an NMDA (AP7) or a neurokinin 1 (NK1; CP-96,345) antagonist. Dorsal horn immunoreactive staining of GLU, substance P (SP), and calcitonin gene-related peptide (CGRP) is reflective of the events occurring in the late phase of amino acid release since GLU release is positively correlated with GLU staining density. Increased immunoreactivity for GLU, SP, and CGRP at 8 hr in the arthritic animals is differentially altered by pretreatment of the spinal cord dorsal horn with non-NMDA, NMDA, or NK1 receptor antagonists. The differential staining pattern for GLU, SP, and CGRP, the differential release of ASP and GLU, and the differential activation of the EAA and NK1 receptors implies that ASP, GLU, SP, and CGRP are each involved in the processing of sensory information and that their roles in the central sensitization occurring with the inflammatory process, are unique.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Arthritis; Biphenyl Compounds; Disease Models, Animal; Glutamates; Glutamic Acid; Immunohistochemistry; Lidocaine; Male; Microdialysis; Neurokinin-1 Receptor Antagonists; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spinal Cord

1993