6-cyano-7-nitroquinoxaline-2-3-dione has been researched along with Apnea* in 2 studies
2 other study(ies) available for 6-cyano-7-nitroquinoxaline-2-3-dione and Apnea
Article | Year |
---|---|
NMDA receptors are involved at the ventrolateral nucleus tractus solitarii for termination of inspiration.
The purpose of the present study was to determine whether blockade of excitatory amino acid receptors at the ventrolateral nucleus of the tractus solitarius would influence respiratory activity. This was done by microinjecting excitatory amino acid receptor antagonists into the ventrolateral nucleus of the tractus solitarius of alpha-chloralose-anesthetized animals while monitoring respiratory activity using a Fleisch pneumotachograph and arterial blood pressure and heart rate. Bilateral microinjection of the NMDA receptor antagonist, 3-[(R)-carboxypiperazin-4-yl]-propyl-1- phosphomic acid (CPP), 5.62 nmol per side, produced an increase in inspiratory duration (+4 +/- 1.6 s, n = 8) which progressed to an apneustic pattern of breathing. Similar results were obtained with CPP microinjected into the ventrolateral nucleus of the tractus solitarius of three vagotomized animals. Bilateral microinjection of a second NMDA receptor antagonist, 2-amino-7-phosphono-heptanoic acid (AP7), 562 nmol per side, produced qualitatively similar effects on respiration as seen with CPP. In contrast, blockade of non-NMDA receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNXQ), 0.125 nmol per side, had very little effect on respiration. Activation of NMDA receptors at the ventrolateral nucleus of the tractus solitarius with bilateral microinjection of NMDA, 39 pmol, produced a large increase in expiratory duration (+11 +/- 3 s, n = 8), and apnea during the expiratory phase of the respiratory cycle in half of the animals studied. Similar results were obtained with D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazol-proprionate (AMPA). These results indicate that an endogenous excitatory amino acid released at the ventrolateral nucleus of the tractus solitarius and acting at the NMDA receptor, plays a significant role in respiratory timing. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Apnea; Blood Pressure; Cats; Female; Heart Rate; Male; Microinjections; N-Methylaspartate; Piperazines; Pulmonary Ventilation; Receptors, N-Methyl-D-Aspartate; Respiration; Solitary Nucleus; Vagotomy | 1995 |
Respiratory effects produced by microinjection of L-glutamate and an uptake inhibitor of L-glutamate into the caudal subretrofacial area of the medulla.
The purposes of our study were to determine the type of respiratory changes that would occur when either an excitatory amino acid receptor agonist or an uptake inhibitor was administered into the caudal subretrofacial area. This was done by microinjecting either L-glutamate or L-pyrrolidine-2,4-dicarboxylate (L-trans-2,4-PDC) into the caudal subretrofacial area while monitoring tidal volume, respiratory rate, mean arterial blood pressure and heart rate. Bilateral microinjection of 2.5 nmol of L-glutamate into the caudal subretrofacial area produced apnea in eight of eight animals tested, and the duration of apnea was 27 +/- 2 s. To determine the type of L-glutamate receptor responsible for mediating the apneic response, antagonists of the N-methyl-D-aspartate (NMDA) and non-NMDA receptor, namely, 3-[(RS)-carboxypiperazin-4-yl]-propyl-phosphonic acid (CPP), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively, were tested. Neither antagonist in doses that blocked NMDA (in the case of CPP) and amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) (in the case of CNQX) blocked apnea elicited by L-glutamate. In addition, kynurenic acid, an antagonist of NMDA and non-NMDA ionotropic receptors, failed to block the effect of L-glutamate. Microinjection of the metabotropic receptor agonist drug, trans-L-1-amino-1,3-cyclopentone-dicarboxylic acid (L-trans-ACPD), into the caudal subretrofacial area failed to have any effect on respiratory activity. Because of the inability to block the effect of L-glutamate in the caudal subretrofacial area, and the lack of effect of L-trans-ACPD, the data suggest that the apneic response produced by L-glutamate is mediated by an as yet undefined receptor. Microinjection of the L-glutamate uptake inhibitor, L-trans-2,4-PDC, was found to produce apnea. Using the dose of 0.5 nmol of L-trans-2,4-PDC, we examined the type of excitatory amino acid receptor that mediated the response. Neither pretreatment with the NMDA receptor antagonist, CPP, nor the non-NMDA receptor antagonist, CNQX, affected L-trans-2,4-PDC-induced apnea. However, combined use of these two antagonists prevented L-trans-2,4-PDC-induced apnea. These data suggest that the effect of synaptically released exitatory amino acid at the caudal subretrofacial area on breathing is apnea, and that this effect is mediated by simultaneous activation of both NMDA and non-NMDA ionotropic receptors. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Apnea; Blood Pressure; Cats; Cycloleucine; Dicarboxylic Acids; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Heart Rate; Kynurenic Acid; Male; Neurotoxins; Neurotransmitter Uptake Inhibitors; Piperazines; Pyrrolidines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Respiration; Respiratory Function Tests; Tidal Volume; Trigeminal Caudal Nucleus | 1995 |