6-bromoindirubin-3--oxime and Neoplasms

6-bromoindirubin-3--oxime has been researched along with Neoplasms* in 2 studies

Reviews

2 review(s) available for 6-bromoindirubin-3--oxime and Neoplasms

ArticleYear
Natural and synthetic bioactive inhibitors of glycogen synthase kinase.
    European journal of medicinal chemistry, 2017, Jan-05, Volume: 125

    Glycogen synthase kinase-3 is a multi-functional serine-threonine kinase and is involved in diverse physiological processes, including metabolism, cell cycle, and gene expression by regulating a wide variety of known substrates like glycogen synthase, tau-protein and β-catenin. Aberrant GSK-3 has been involved in diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. In this review, we present an overview of the involvement of GSK-3 in various signalling pathways, resulting in a number of adverse pathologies due to its dysregulation. In addition, a detailed description of the small molecule inhibitors of GSK-3 with different mode of action discovered or specifically developed for GSK-3 has been presented. Furthermore, some clues for the future optimization of these promising molecules to develop specific drugs inhibiting GSK-3, for the treatment of associated disease conditions have also been discussed.

    Topics: Alzheimer Disease; Animals; Bipolar Disorder; Clinical Trials as Topic; Diabetes Mellitus; Drug Discovery; Glycogen Synthase Kinase 3; Humans; Models, Molecular; Neoplasms; Patents as Topic; Phosphorylation; Protein Kinase Inhibitors; Signal Transduction

2017
Pharmacological inhibitors of glycogen synthase kinase 3.
    Trends in pharmacological sciences, 2004, Volume: 25, Issue:9

    Three closely related forms of glycogen synthase kinase 3 (GSK-3alpha, GSK-3beta and GSK-3beta2) have a major role in Wnt and Hedgehog signaling pathways and regulate the cell-division cycle, stem-cell renewal and differentiation, apoptosis, circadian rhythm, transcription and insulin action. A large body of evidence supports speculation that pharmacological inhibitors of GSK-3 could be used to treat several diseases, including Alzheimer's disease and other neurodegenerative diseases, bipolar affective disorder, diabetes, and diseases caused by unicellular parasites that express GSK-3 homologues. The toxicity, associated side-effects and concerns regarding the absorption, distribution, metabolism and excretion of these inhibitors affect their clinical potential. More than 30 inhibitors of GSK-3 have been identified. Seven of these have been co-crystallized with GSK-3beta and all localize within the ATP-binding pocket of the enzyme. GSK-3, as part of a multi-protein complex that contains proteins such as axin, presenilin and beta-catenin, contains many additional target sites for specific modulation of its activity.

    Topics: Animals; Cell Differentiation; Diabetes Mellitus, Type 2; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Humans; Neoplasms; Nervous System Diseases; Parasitic Diseases; Signal Transduction; Stem Cells; Structure-Activity Relationship

2004