6-7-dihydroxyflavone has been researched along with Brain-Injuries* in 3 studies
3 other study(ies) available for 6-7-dihydroxyflavone and Brain-Injuries
Article | Year |
---|---|
Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation.
Traumatic brain injury (TBI) is followed by a state of metabolic dysfunction, affecting the ability of neurons to use energy and support brain plasticity; there is no effective therapy to counteract the TBI pathology. Brain-derived neurotrophic factor (BDNF) has an exceptional capacity to support metabolism and plasticity, which highly contrasts with its poor pharmacological profile. We evaluated the action of a flavonoid derivative 7,8-dihydroxyflavone (7,8-DHF), a BDNF receptor (TrkB) agonist with the pharmacological profile congruent for potential human therapies. Treatment with 7,8-DHF (5mg/kg, ip, daily for 7 days) was effective to ameliorate the effects of TBI on plasticity markers (CREB phosphorylation, GAP-43 and syntaxin-3 levels) and memory function in Barnes maze test. Treatment with 7,8-DHF restored the decrease in protein and phenotypic expression of TrkB phosphorylation after TBI. In turn, intrahippocampal injections of K252a, a TrkB antagonist, counteracted the 7,8-DHF induced TrkB signaling activation and memory improvement in TBI, suggesting the pivotal role of TrkB signaling in cognitive performance after brain injury. A potential action of 7,8-DHF on cell energy homeostasis was corroborated by the normalization in levels of PGC-1α, TFAM, COII, AMPK and SIRT1 in animals subjected to TBI. Results suggest a potential mechanism by which 7,8-DHF counteracts TBI pathology via activation of the TrkB receptor and engaging the interplay between cell energy management and synaptic plasticity. Since metabolic dysfunction is an important risk factor for the development of neurological and psychiatric disorders, these results set a precedent for the therapeutic use of 7,8-DHF in a larger context. Topics: Animals; Brain Injuries; Carbazoles; Cognition Disorders; Cyclic AMP Response Element-Binding Protein; Energy Metabolism; Flavones; GAP-43 Protein; Immunoblotting; Indole Alkaloids; Male; Maze Learning; Memory; Microscopy, Fluorescence; Mitochondria; Phosphorylation; Qa-SNARE Proteins; Rats, Sprague-Dawley; Receptor, trkB; Signal Transduction | 2015 |
The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury.
Previous studies in rodents have shown that after a moderate traumatic brain injury (TBI) with a controlled cortical impact (CCI) device, the adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus. There is no effective approach for preventing immature neuron death after TBI. We found that tyrosine-related kinase B (TrkB), a receptor of brain-derived neurotrophic factor (BDNF), is highly expressed in adult-born immature neurons. We determined that the small molecule imitating BDNF, 7, 8-dihydroxyflavone (DHF), increased phosphorylation of TrkB in immature neurons both in vitro and in vivo. Pretreatment with DHF protected immature neurons from excitotoxicity-mediated death in vitro, and systemic administration of DHF before moderate CCI injury reduced the death of adult-born immature neurons in the hippocampus 24 hours after injury. By contrast, inhibiting BDNF signaling using the TrkB antagonist ANA12 attenuated the neuroprotective effects of DHF. These data indicate that DHF may be a promising chemical compound that promotes immature neuron survival after TBI through activation of the BDNF signaling pathway. Topics: Animals; Animals, Newborn; Azepines; Benzamides; Brain Injuries; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Flavones; Fluoresceins; Hippocampus; In Vitro Techniques; Male; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Phosphorylation; Receptor, trkB; Signal Transduction | 2015 |
Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling.
Tropomyosin-related kinase B (TrkB) signaling is critical for promoting neuronal survival following brain damage. The present study investigated the effects and underlying mechanisms of TrkB activation by the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) on traumatic brain injury (TBI). Mice subjected to controlled cortical impact received intraperitoneal 7,8-DHF or vehicle injection 10 min post-injury and subsequently daily for 3 days. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of TrkB signaling-related molecules and apoptosis-related proteins were analyzed. The protective effect of 7,8-DHF was also investigated in primary neurons subjected to stretch injury. Treatment with 20 mg/kg 7,8-DHF attenuated functional deficits and brain damage up to post-injury day 28. 7,8-DHF also reduced brain edema, neuronal death, and apoptosis at day 4. These changes were accompanied by a significant decrease in cleaved caspase-3 and increase in Bcl-2/Bax ratio. 7,8-DHF enhanced phosphorylation of TrkB, Akt (Ser473/Thr308), and Bad at day 4, but had no effect on Erk 1/2 phosphorylation. Moreover, 7,8-DHF increased brain-derived neurotrophic factor levels and promoted cAMP response element-binding protein (CREB) activation. This beneficial effect was attenuated by inhibition of TrkB or PI3K/Akt. 7,8-DHF also promoted survival and reduced apoptosis in cortical neurons subjected to stretch injury. Remarkably, delayed administration of 7,8-DHF at 3 h post-injury reduced brain tissue damage. Our study demonstrates that activation of TrkB signaling by 7,8-DHF protects against TBI via the PI3K/Akt but not Erk pathway, and this protective effect may be amplified via the PI3K/Akt-CREB cascades. Topics: Animals; Apoptosis; Brain Edema; Brain Injuries; Cell Death; Disease Models, Animal; Flavones; Gene Expression Regulation; Injections, Intraperitoneal; MAP Kinase Signaling System; Mice; Neurons; Neuroprotective Agents; Receptor, trkB | 2014 |