5f-203 and Breast-Neoplasms

5f-203 has been researched along with Breast-Neoplasms* in 7 studies

Other Studies

7 other study(ies) available for 5f-203 and Breast-Neoplasms

ArticleYear
Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells.
    Chemical research in toxicology, 2015, May-18, Volume: 28, Issue:5

    Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action.

    Topics: Antineoplastic Agents; Apoptosis; Breast; Breast Neoplasms; Cell Line, Tumor; DNA Damage; Female; Gene Expression Regulation, Neoplastic; Humans; JNK Mitogen-Activated Protein Kinases; MCF-7 Cells; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Reactive Oxygen Species; Receptors, Aryl Hydrocarbon; Thiazoles

2015
CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells.
    Molecular cancer therapeutics, 2011, Volume: 10, Issue:10

    Both 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F-203; NSC 703786) and 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610; NSC 721648) are antitumor agents with novel mechanism(s). Previous studies have indicated that cytochrome (CYP) P450 1A1 is crucial for 5F-203 activity. In the present study, we investigated the functional role of 2 newly identified CYP P450 enzymes, CYP2S1 and CYP2W1, in mediating antitumor activity of benzothiazole compounds. We generated isogenic breast cancer (MDA-MB-468, MCF-7) and colorectal cancer (CRC; KM12 and HCC2998) cell lines depleted for CYP1A1, CYP2S1, or CYP2W1. The sensitivity of these cells to 5F-203 and GW-610 was then compared with vector control cells. 5F-203 exhibited potent activity against breast cancer cells, whereas GW-610 was effective against both breast and colorectal cancer cells. CYP1A1 was induced in both breast cancer and CRC cells, while CYP2S1 and CYP2W1 were selectively induced in breast cancer cells only following treatment with 5F-203 or GW-610. Depletion of CYP1A1 abrogated the sensitivity of breast cancer and CRC cells to 5F-203 and GW-610. Although depletion of CYP2S1 sensitized both breast cancer and CRC cells toward 5F-203 and GW-610, CYP2W1 knockdown caused marked resistance to GW-610 in CRC cells. Our results indicate that CYP-P450 isoforms, with the exception of CYP1A1, play an important role in mediating benzothiazole activity. CYP2S1 appears to be involved in deactivation of benzothiazoles, whereas CYP2W1 is important for bioactivation of GW-610 in CRC cells. Because CYP2W1 is highly expressed in colorectal tumors, GW-610 represents a promising agent for CRC therapy.

    Topics: Antineoplastic Agents; Benzothiazoles; Breast Neoplasms; Cell Growth Processes; Cell Line, Tumor; Colorectal Neoplasms; Cytochrome P-450 CYP1A1; Cytochrome P-450 Enzyme System; Cytochrome P450 Family 2; Enzyme Induction; Female; Humans; Male; Thiazoles

2011
BRCA1 modulates sensitivity to 5F-203 by regulating xenobiotic stress-inducible protein levels and EROD activity.
    Cancer chemotherapy and pharmacology, 2008, Volume: 62, Issue:4

    We have investigated the effects of BRCA1 over-expression and knockdown on 5F-203-induced gene expression and cytotoxicity in human breast cancer cells. 5F-203 is a chemotherapeutic prodrug that both induces a p450 enzyme, CYP1A1, and is metabolically activated by CYP1A1.. We used several molecular biological techniques to confirm our findings. BRCA1 regulates sensitivity to 5F-203 by regulating the expression of CYP1A1 mRNA and its EROD activity. XRE-Luc reporter assays, semi-quantitative RT-PCR, Western blot analysis, EROD activity measurements, gene knockdown and MTT cell survival assays were used for this study.. Our results show that the ability of 5F-203 treatments to increase CYP1A1 mRNA level and CYP1A1 enzymatic activity (EROD activity) are affected by BRCA1 protein levels. In addition, the ability of 5F-203 treatments to induce proteins, P53 and P53 target genes such as P21, is significantly decreased in BRCA1 knockdown cells, suggesting that BRCA1-related effects could at least partially explain why BRCA1 knockdown increases resistance to 5F-203-mediated cytotoxicity. We also observed altered expression of the two major transcription factors (AhR and ARNT) that affect CYP1A1 expression when BRCA1 protein levels are altered.. BRCA1 is an important protein, which affects 5F-203-mediated cytotoxicity. Our findings are potentially clinically significant; they suggest that those patients most likely to respond to this new prodrug will have tumors containing normal amounts of BRCA1.

    Topics: Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Cyclin-Dependent Kinase Inhibitor p21; Cytochrome P-450 CYP1A1; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Enzyme Induction; Female; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Prodrugs; RNA, Small Interfering; Thiazoles; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligases

2008
Antitumor benzothiazoles. 26.(1) 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines.
    Journal of medicinal chemistry, 2006, Jan-12, Volume: 49, Issue:1

    A series of new 2-phenylbenzothiazoles has been synthesized on the basis of the discovery of the potent and selective in vitro antitumor properties of 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (8n; GW 610, NSC 721648). Synthesis of analogues substituted in the benzothiazole ring was achieved via the reaction of o-aminothiophenol disulfides with substituted benzaldehydes under reducing conditions. Compounds were evaluated in vitro in four human cancer cell lines, and compound 8n was found to possess exquisitely potent antiproliferative activity (GI(50) < 0.1 nM for MCF-7 and MDA 468). Potent and selective activity was also observed in the NCI 60 human cancer cell line panel. Structure-activity relationships established that the compound 8n stands on a pinnacle of potent activity, with most structural variations having a deactivating in vitro effect. Mechanistically, this new series of agents contrasts with the previously reported 2-(4-aminophenyl)benzothiazoles; compound 8n is not reliant on induction of CYP1A1 expression for antitumor activity.

    Topics: Antineoplastic Agents; Benzothiazoles; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Drug Screening Assays, Antitumor; Humans; In Vitro Techniques; Lung Neoplasms; Molecular Structure; Stereoisomerism

2006
Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells.
    Cancer chemotherapy and pharmacology, 2006, Volume: 58, Issue:1

    The fluorinated benzothiazole analogue 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) exhibits selective and potent anticancer activity, and its lysylamide prodrug (Phortress, NSC 710305) recently entered Phase I clinical trials in the United Kingdom. Only cancer cells sensitive to the anti-proliferative effects of 5F 203 deplete this drug candidate from nutrient media. 5F 203 induces cell cycle arrest, cytochrome P450 1A1 (CYP 1A1) mRNA and protein expression, and is metabolized into reactive electrophilic species that can covalently bind to DNA and form adducts in sensitive (i.e., MCF-7) but not in resistant (i.e., MDA-MB-435) breast cancer cells.. In this present study, we investigated additional anticancer effects of 5F 203 in MCF-7 cells. In addition, we sought to determine if cells deficient in the xeroderma pigmentosum D gene, a gene critical in DNA repair, would show greater sensitivity to the cytotoxic effects of 5F 203 than those complemented with XPD.. Alkaline Elution revealed that 5F 203 induced single-strand breaks and DNA-protein cross-links in sensitive MCF-7 cells. In contrast, we detected no double-strand breaks or protein-associated strand breaks typically associated with topoisomerase I (top1) or topoisomerase II (top2) inhibition. In addition, 5F 203 was unable to trap top1- or top2-DNA cleavage complexes in MCF-7 cells. 5F 203 induced cell cycle arrest in MCF-7 cells following DNA damage after brief exposures. Cells deficient in the nucleotide excision repair xeroderma pigmentosum group D (XPD) gene displayed sensitivity to 5F 203 while cells complemented with XPD displayed resistance to 5F 203.. These data suggest that the anti-cancer activity of 5F 203 depends upon targets other than top1 or top2 and on the ability of this benzothiazole to form single-strand breaks and DNA-protein cross-links in cancer cells.

    Topics: Antineoplastic Agents; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Humans; Thiazoles

2006
In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles.
    Molecular cancer therapeutics, 2004, Volume: 3, Issue:12

    Phortress is a novel, potent, and selective experimental antitumor agent. Its mechanism of action involves induction of CYP1A1-catalyzed biotransformation of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) to generate electrophilic species, which covalently bind to DNA, exacting lethal damage to sensitive tumor cells, in vitro and in vivo. Herein, we investigate the effects of DNA adduct formation on cellular DNA integrity and progression through cell cycle and examine whether a relevant pharmacodynamic end point may be exploited to probe the clinical mechanism of action of Phortress and predict tumor response. Single cell gel electrophoresis (SCGE) was applied to quantify DNA damage and cell cycle analyses conducted upon 5F 203 treatment of benzothiazole-sensitive MCF-7 and inherently resistant MDA-MB-435 breast carcinoma cells. Following treatment of xenograft-bearing mice and mice possessing hollow fiber implants containing MCF-7 or MDA-MB-435 cells with Phortress (20 mg/kg, i.p., 24 hours), tumor cells and xenografts were recovered for analyses by SCGE. Dose- and time-dependent DNA single and double strand breaks occurred exclusively in sensitive cells following treatment with 5F 203 in vitro (10 nmol/L-10 micromol/L; 24-72 hours). In vivo, Phortress-sensitive and Phortress-resistant tumor cells were distinct; moreover, DNA damage in xenografts, following treatment of mice with Phortress, could be determined. Interrogation of the mechanism of action of 5F 203 in silico by self-organizing map-based cluster analyses revealed modulation of phosphatases and kinases associated with cell cycle regulation, corroborating observations of selective cell cycle perturbation by 5F 203 in sensitive cells. By conducting SCGE, tumor sensitivity to Phortress, an agent currently undergoing clinical evaluation, may be determined.

    Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Cycle; Comet Assay; Computational Biology; Cytochrome P-450 CYP1A1; DNA Adducts; DNA Damage; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; Humans; In Vitro Techniques; Membranes, Artificial; Mice; Mice, Nude; Thiazoles; Time Factors; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2004
Genotoxic profiling of MCF-7 breast cancer cell line elucidates gene expression modifications underlying toxicity of the anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole.
    Molecular pharmacology, 2003, Volume: 63, Issue:3

    A candidate antitumor agent, 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F-203), was empirically discovered through the National Cancer Institute's Anticancer Drug Screen from a unique growth inhibitory-response profile, indicating a novel mechanism of action. 5F-203 activates the CYP1 family of cytochrome P450, involving aryl hydrocarbon receptor translocation into the nucleus. To characterize more completely the pathways involved in 5F-203 toxicity, cDNA microarrays were used to determine gene expression changes in MCF-7, a 5F-203-sensitive breast cancer cell line, after treatment with 1 microM 5F-203. The mRNA expression of CYP1A1 and CYP1B1 were both increased approximately 20-fold after 24 h, but less after 6 h of treatment, confirming previous results. However, the most pronounced drug-induced change was in the PLAB gene, encoding one of the bone morphogenic proteins in the transforming growth factor-beta (TGF-beta) superfamily. Other induced gene expressions included the apoptosis-initiating receptor TNFRSF6 (CD95/FAS), the DNA-damage response genes CDKN1A (p21/Cip1), p53-induced gene-3, and DNA binding protein 2. In contrast, the transcription factor c-Myc showed reduced expression. Western blot analysis also showed induction of p53 protein expression in response to 5F-203 treatment. In contrast to the MCF-7 data, MDA-MB-435, a cancer cell line resistant to 5F-203, showed no change in expression of any of these genes or the p53 protein under the same conditions of 5F-203 treatment. These data are consistent with the idea that CYP1A1 and CYP1B1 activation leads to 5F-203 toxicity through DNA damage-induced apoptosis, as well as signaling through a variant member of the TGF-beta superfamily.

    Topics: Antineoplastic Agents; Breast Neoplasms; Female; Gene Expression; Gene Expression Profiling; Humans; Oligonucleotide Array Sequence Analysis; Reverse Transcriptase Polymerase Chain Reaction; Thiazoles; Tumor Cells, Cultured

2003