5-formyluracil and Colorectal-Neoplasms

5-formyluracil has been researched along with Colorectal-Neoplasms* in 1 studies

Other Studies

1 other study(ies) available for 5-formyluracil and Colorectal-Neoplasms

ArticleYear
Detection and Application of 5-Formylcytosine and 5-Formyluracil in DNA.
    Accounts of chemical research, 2019, 04-16, Volume: 52, Issue:4

    Nucleic acids contain a variety of different base modifications, such as decoration at the fifth position of cytosine, which is one of the most important epigenetic modifications. Nucleic acid epigenetics mediate a wide variety of biological processes, including embryonic development and gene regulation, genomic imprinting, differentiation, and X-chromosome inactivation. Furthermore, the modification level can be aberrantly expressed in distinct sets of tissue that can indicate different tumor onsets and canceration. Thus, the analysis of modified nucleobases may contribute to the understanding of epigenetic modification-related biological processes and the correlation of modified nucleobase patterns with disease states for clinical diagnosis and treatment. In addition to 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine are found in organisms at a low content but are nevertheless extremely important chemical modifications, and 5-hydroxyuracil and 5-formyluracil compounds are also present. 5-Formyluracil is found in bacteriophages, prokaryotes, and mammalian cells. The 5-formyluracil content is higher in certain cancer tissues than in the normal tissues adjacent to the tumor. The content of 5-formyluracil in different cell tissues may have cell type specificity. With the continuous use of chemical tools, new detection technologies have greatly advanced the research on natural pyrimidine modifications. These modifications dynamically regulate the gene expression in eukaryotes and prokaryotes and provide mechanistic insights into the occurrence of diseases. Natural pyrimidine modifications act not only as intermediates for DNA demethylation or oxidative damage products but also as modulators of gene expression. Therefore, the development of more effective chemical tools will help us better understand the dynamic changes of natural pyrimidine modifications in vivo. In this Account, we summarize the recent advanced techniques for the detection of 5-formylpyrimidine (5-formylcytosine and 5-formyluracil) and highlight their great potential as biomarkers in biomedical applications. Focusing on the great urgency for the detection of epigenetic modifications, our group developed a series of methods for the qualitative and quantitative analysis of 5-formylpyrimidine in the past few years, aiming at facilitating the accurate detection and mapping of these epigenetic modifications. By the construction of probes, 5-formylpyrimidine can

    Topics: Biomarkers, Tumor; Colorectal Neoplasms; Cytosine; DNA; Fluorescent Dyes; Humans; Mass Spectrometry; Uracil

2019