5-ethynyl-2--deoxyuridine has been researched along with Necrosis* in 2 studies
2 other study(ies) available for 5-ethynyl-2--deoxyuridine and Necrosis
Article | Year |
---|---|
High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia.
Post-stroke hyperglycemia appears to be associated with poor outcome from stroke, greater mortality, and reduced functional recovery. Focal cerebral ischemia data support that neural stem cells (NSCs) play an important role in post-ischemic repair. Here we sought to evaluate the negative effects of hyperglycemia on the cellular biology of NSCs following anoxia, and to test whether high glucose affects NSC recovery from ischemic injury.. In this study, we used immortalized adult neural stem cells lines and we induced in vitro ischemia by 6 h oxygen and glucose deprivation (OGD) in an anaerobic incubator. Reperfusion was performed by returning cells to normoxic conditions and the cells were then incubated in experimental medium with various concentrations of glucose (17.5, 27.75, 41.75, and 83.75 mM) for 24 h. We found that high glucose (≥27.75 mM) exposure induced apoptosis of NSCs in a dose-dependent manner after exposure to OGD, using an Annexin V/PI apoptosis detection kit. The cell viability and proliferative activity of NSCs following OGD in vitro, evaluated with both a Cell Counting kit-8 (CCK-8) assay and a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, were inhibited by high glucose exposure. Cell cycle analysis showed that high glucose exposure increased the percentage of cells in G0/G1-phase, and reduced the percentage of cells in S-phase. Furthermore, high glucose exposure was found to significantly induce the activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) and suppress extracellular signal-regulated kinase 1/2 (ERK1/2) activity.. Our results demonstrate that high glucose induces apoptosis and inhibits proliferation of NSCs following OGD in vitro, which may be associated with the activation of JNK/p38 MAPK pathways and the delay of G1-S transition in the cells. Topics: Adult Stem Cells; Animals; Apoptosis; Cell Cycle; Cell Proliferation; Cell Survival; Cells, Cultured; Deoxyuridine; Dose-Response Relationship, Drug; Glucose; Hypoxia; Necrosis; Nerve Tissue Proteins; Rats | 2013 |
The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration.
The paucity of mammalian adult cardiac myocytes (CM) proliferation following myocardial infarction (MI) and the remodeling of the necrotic tissue that ensues, result in non-regenerative repair. In contrast, zebrafish (ZF) can regenerate after an apical resection or cryoinjury of the heart. There is considerable interest in models where regeneration proceeds in the presence of necrotic tissue. We have developed and characterized a cautery injury model in the giant danio (GD), a species closely related to ZF, where necrotic tissue remains part of the ventricle, yet regeneration occurs. By light and transmission electron microscopy (TEM), we have documented four temporally overlapping processes: (1) a robust inflammatory response analogous to that observed in MI, (2) concomitant proliferation of epicardial cells leading to wound closure, (3) resorption of necrotic tissue and its replacement by granulation tissue, and (4) regeneration of the myocardial tissue driven by 5-EDU and [(3) H]thymidine incorporating CMs. In conclusion, our data suggest that the GD possesses robust repair mechanisms in the ventricle and can serve as an important model of cardiac inflammation, remodeling and regeneration. Topics: Animals; Cell Proliferation; Deoxyuridine; Disease Models, Animal; Granulation Tissue; Inflammation; Myocytes, Cardiac; Necrosis; Neovascularization, Pathologic; Pericardium; Regeneration; Thymidine; Ventricular Remodeling; Wound Healing; Zebrafish | 2012 |