5-aminolevulinic-acid-hexyl-ester has been researched along with Leukemia--T-Cell* in 2 studies
2 other study(ies) available for 5-aminolevulinic-acid-hexyl-ester and Leukemia--T-Cell
Article | Year |
---|---|
Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate.
Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways.. In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings.. Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing. Topics: Activating Transcription Factor 3; Alternative Splicing; Aminolevulinic Acid; Cell Line, Tumor; Cell Survival; DNA, Mitochondrial; Dose-Response Relationship, Drug; Exons; Gene Expression Regulation; Histones; Humans; Jurkat Cells; Leukemia, T-Cell; MAP Kinase Kinase 4; Metalloproteases; Models, Biological; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Photochemotherapy; Photosensitizing Agents; Protein Isoforms; Proto-Oncogene Proteins c-myc; Time Factors; Transcription, Genetic | 2007 |
Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells.
Photodynamic therapy (PDT) is a cancer treatment based on the interaction of a photosensitizer, light and oxygen. PDT with the endogenous photosensitizer, protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) or its derivatives is a modification of this treatment modality with successful application in dermatology. However, the mechanism of cell destruction by ALA-PDT has not been elucidated. In this study a human T-cell lymphoma Jurkat cell line was treated with PDT using hexaminolevulinate (HAL, hexylester of ALA). Four hours following treatment nearly 80% of the cells exhibited typical apoptotic features. Mitochondrial pro-apoptotic proteins were evaluated by Western blots in subcellular fractionated samples. PDT caused cytosolic translocation of cytochrome c and nuclear redistribution of apoptosis-inducing factor (AIF), but the release of mitochondrial Smac/DIABLO, Omi/HtrA2 and EndoG was not observed. The release of cytochrome c was followed by the cleavage of caspase-9 and caspase-3 as well as its downstream substrates, together with oligonucleosomal DNA fragmentation. The pan-caspases inhibitor, z-VAD.fmk, prevented oligonucleosomal DNA fragmentation, but failed to inhibit PDT-mediated apoptosis. The apoptotic induction by AIF-mediated caspase-independent pathway was also found after HAL-PDT with large-scale DNA fragmentation in the presence of z-VAD.fmk. These results demonstrate that cytochrome c-mediated caspase-dependent pathway and AIF-induced caspase-independent pathway are simultaneously involved in the apoptotic induction by PDT. When the cytochrome c-induced caspase-dependent pathway is blocked, the cells go into apoptosis via AIF-mediated pathway, clearly demonstrating that the cytochrome c-mediated caspase-dependent pathway is not required for such apoptotic induction. This finding may have an impact on improved PDT effectiveness. Topics: Amino Acid Chloromethyl Ketones; Aminolevulinic Acid; Apoptosis; Apoptosis Inducing Factor; Caspases; Cytochromes c; Enzyme Inhibitors; Humans; Jurkat Cells; Leukemia, T-Cell; Membrane Potential, Mitochondrial; Mitochondria; Photochemotherapy; Protoporphyrins | 2006 |