5-7-dihydroxy-4--6-dimethoxyflavone and Inflammation

5-7-dihydroxy-4--6-dimethoxyflavone has been researched along with Inflammation* in 3 studies

Other Studies

3 other study(ies) available for 5-7-dihydroxy-4--6-dimethoxyflavone and Inflammation

ArticleYear
Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2023, Volume: 113

    Cirsii Japonici Herba Carbonisata (Dajitan in Chinese) has been used to treat liver disorders in Asian countries. Pectolinarigenin (PEC), an abundant constituent in Dajitan, has been found to possess a wide range of biological benefits, including hepatoprotective effects. However, the effects of PEC on acetaminophen (APAP)-induced liver injury (AILI) and the underlying mechanisms have not been studied.. To explore the role and mechanisms of PEC in protecting against AILI.. The hepatoprotective benefits of PEC were studied using a mouse model and HepG2 cells. PEC was tested for its effects by injecting it intraperitoneally before APAP administration. To assess liver damage, histological and biochemical tests were performed. The levels of inflammatory factors in the liver were measured using RT-PCR and ELISA. Western blotting was used to measure the expression of a panel of key proteins involved in APAP metabolism, as well as Nrf2 and PPARα. PEC mechanisms on AILI were investigated using HepG2 cells, while the Nrf2 inhibitor (ML385) and PPARα inhibitor (GW6471) were used to validate the importance of either Nrf2 and PPARα in the hepatoprotective effects of PEC.. PEC treatment decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in the liver. PEC pretreatment increased the activity of superoxide dismutase (SOD) and glutathione (GSH) while decreasing malondialdehyde production (MDA). PEC could also up-regulate two important APAP detoxification enzymes (UGT1A1 and SULT1A1). Further research revealed that PEC reduced hepatic oxidative damage and inflammation, and up-regulated APAP detoxification enzymes in hepatocytes by activating the Nrf2 and PPARα signaling pathways.. PEC ameliorates AILI by decreasing hepatic oxidative stress and inflammation while increasing phase Ⅱ detoxification enzymes related to APAP harmless metabolism through activation of Nrf2 and PPARα signaling. Hence, PEC may serve as a promising therapeutic drug against AILI.

    Topics: Acetaminophen; Chemical and Drug Induced Liver Injury; Glutathione; Humans; Inflammation; Liver; NF-E2-Related Factor 2; Oxidative Stress; PPAR alpha

2023
Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata.
    Journal of natural products, 2014, Mar-28, Volume: 77, Issue:3

    Activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) contributes to several beneficial bioactivities of natural products, including induction of an increased cellular stress resistance and prevention or resolution of inflammation. In this study, the potential of a crude leaf extract of Chromolaena odorata, traditionally used against inflammation and skin lesions, was examined for Nrf2 activation. Guided by an Nrf2-dependent luciferase reporter gene assay, the phytoprostane chromomoric acid C-I (1) was identified as a potent Nrf2 activator from C. odorata with a CD (concentration doubling the response of vehicle-treated cells) of 5.2 μM. When tested at 1-10 μM, 1 was able to induce the endogenous Nrf2 target gene heme oxygenase 1 (HO-1) in fibroblasts. Between 2 and 5 μM, compound 1 induced HO-1 in vascular smooth muscle cells (VSMC) and inhibited their proliferation in a HO-1-dependent manner, without eliciting signs of cytotoxicity.

    Topics: Cell Culture Techniques; Cell Survival; Chromolaena; Fatty Acids, Unsaturated; Furans; Heme Oxygenase-1; Inflammation; Luciferases; Molecular Structure; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NF-E2-Related Factor 2; Plant Leaves; Vietnam

2014
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010