5-6-epoxycholesterol has been researched along with Breast-Neoplasms* in 3 studies
1 review(s) available for 5-6-epoxycholesterol and Breast-Neoplasms
Article | Year |
---|---|
The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets.
Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRβ) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc. Topics: Breast Neoplasms; Cell Proliferation; Cholesterol; Female; Humans; Metabolic Networks and Pathways | 2021 |
2 other study(ies) available for 5-6-epoxycholesterol and Breast-Neoplasms
Article | Year |
---|---|
Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study.
Accumulating evidence indicates that cholesterol oxygenation products, also known as oxysterols (OS), are involved in breast cancer (BC) promotion. The impact of Tam, as well as aromatase inhibitors (AI), an alternative BC endocrine therapy (ET), on OS metabolism in patients is currently unknown. We conducted a prospective clinical study in BC patients receiving Tam (n=15) or AI (n=14) in adjuvant or in metastatic settings. The primary end point was the feasibility of detecting and quantifying 11 different OS in the circulation of patients before and after 28days of treatment with Tam or AI. Key secondary end points were the measurements of variations in the concentrations of OS according to differences between patients and treatments. OS profiling in the serum of patients was determined by gas chromatography coupled to mass spectrometry. OS profiling was conducted in all patients both at baseline and during treatment regimens. An important inter-individual variability was observed for each OS. Interestingly 5,6β-epoxycholesterol relative concentrations significantly increased in the entire population (p=0.0109), while no increase in Cholestane-triol (CT) levels was measured. Interestingly, we found that, in contrast to AI, Tam therapy significantly decreased blood levels of 24-hydroxycholesterol (24-HC), 7α-HC and 25-HC (a tumor promoter) (p=0.0007, p=0.0231 and p=0.0231, respectively), whereas 4β-HC levels increased (p=0.0010). Interestingly, levels of 27-HC (a tumor promoter) significantly increased in response to AI (p=0.0342), but not Tam treatment. According to these results, specific OS are promising candidate markers of Tam and AI efficacy. Thus, further clinical investigations are needed to confirm the use of oxysterols as biomarkers of both prognosis and/or the efficacy of ET. Topics: Adult; Aged; Androstadienes; Aromatase; Aromatase Inhibitors; Biomarkers; Body Mass Index; Breast Neoplasms; Cholestanes; Cholesterol; Feasibility Studies; Female; Gas Chromatography-Mass Spectrometry; Hormones; Humans; Letrozole; Middle Aged; Neoplasm Metastasis; Nitriles; Oxidative Stress; Oxysterols; Pilot Projects; Prognosis; Prospective Studies; Reproducibility of Results; Signal Transduction; Tamoxifen; Triazoles | 2017 |
5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells.
Tamoxifen (Tam) is a selective estrogen receptor modulator (SERM) that remains one of the major drugs used in the hormonotherapy of breast cancer (BC). In addition to its SERM activity, we recently showed that the oxidative metabolism of cholesterol plays a role in its anticancer pharmacology. We established that these effects were not regulated by the ER but by the microsomal antiestrogen binding site/cholesterol-5,6-epoxide hydrolase complex (AEBS/ChEH). The present study aimed to identify the oxysterols that are produced under Tam treatment and to define their mechanisms of action. Tam and PBPE (a selective AEBS/ChEH ligand) stimulated the production and the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC), 5,6α-epoxy-cholesterol-3β-sulfate (5,6-ECS), 5,6β-epoxy-cholesterol (5,6β-EC) in MCF-7 cells through a ROS-dependent mechanism, by inhibiting ChEH and inducing sulfation of 5,6α-EC by SULT2B1b. We showed that only 5,6α-EC was responsible for the induction of triacylglycerol (TAG) biosynthesis by Tam and PBPE, through the modulation of the oxysterol receptor LXRβ. The cytotoxicity mediated by Tam and PBPE was triggered by 5,6β-EC through an LXRβ-independent route and by 5,6-ECS through an LXRβ-dependent mechanism. The importance of SULT2B1b was confirmed by its ectopic expression in the SULT2B1b(-) MDA-MB-231 cells, which became sensitive to 5,6α-EC, Tam or PBPE at a comparable level to MCF-7 cells. This study established that 5,6-EC metabolites contribute to the anticancer pharmacology of Tam and highlights a novel signaling pathway that points to a rationale for re-sensitizing BC cells to Tam and AEBS/ChEH ligands. Topics: Antineoplastic Agents; Binding Sites; Breast Neoplasms; Cell Line, Tumor; Cholesterol; Epoxide Hydrolases; Estrogen Receptor Modulators; Female; Humans; Ligands; Liver X Receptors; Orphan Nuclear Receptors; Oxidation-Reduction; Pyrrolidines; Reactive Oxygen Species; Selective Estrogen Receptor Modulators; Sulfotransferases; Tamoxifen; Triglycerides | 2013 |