5-5--6-6--tetrachloro-1-1--3-3--tetraethylbenzimidazolocarbocyanine has been researched along with Liver-Neoplasms* in 2 studies
2 other study(ies) available for 5-5--6-6--tetrachloro-1-1--3-3--tetraethylbenzimidazolocarbocyanine and Liver-Neoplasms
Article | Year |
---|---|
Glycoborinine induces apoptosis through mitochondrial pathway in HepG2 cells.
Glycoborinine (GB), a natural carbazole alkaloid isolated from Glycosmis pentaphylla, has been shown to be a potential molecule against cancer cells. In this study, the cell-signaling pathway of its anti-tumor activity was investigated. MTT assay result showed that GB inhibited HepG2 cell proliferation in a dose- and time-dependent manner and 50% inhibiting concentration (IC50) of GB-induced cell death was 39.7 μM for a period of 48 h. GB-induced HepG2 apoptosis was confirmed by Hochest 33258 staining and PI staining. The level of reactive oxygen species (ROS) was measured with H2DCF-DA staining and the change of mitochondrial membrane potential (△Ψ(m)) was analyzed with tetrechloro-tetraethylbenzimidazolcarbocyanine iodide (JC-1) probe. Results showed that GB at 12.5, 25, and 50 μM promoted ROS production. GB induced HepG2 apoptosis through a mitochondrial apoptotic pathway, which was demonstrated by GB-induced increase in the ratio of Bax/Bcl-2, cytochrome C release, the ratio of cleaved caspase-3/procaspase-3, and the ratio of cleaved poly ADP-ribose polymerase (cleaved PARP)/poly ADP-ribose polymerase (PARP). To summarize, this study demonstrated that GB could induce HepG2 apoptosis through the mitochondrial-dependent pathway, which might provide a promising approach to cure liver cancer with GB. Topics: Apoptosis; Benzimidazoles; Carbazoles; Carbocyanines; Caspase 3; Cytochromes c; Dose-Response Relationship, Drug; Hep G2 Cells; Humans; Inhibitory Concentration 50; Liver Neoplasms; Membrane Potential, Mitochondrial; Molecular Structure; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species | 2014 |
Apoptosis induction of ZBB-006, a novel synthetic diterpenoid, in the human hepatocellular carcinoma cell line HepG2 in vitro and in vivo.
Diterpenes, present in many medicinal plants, have been the focus of continuous studies for the development of new anticancer agents. ZBB-006 is a new synthetic diterpenoid derivative which exhibited significant anti-proliferation activity against various cancer cell lines in our previous study. Here, we investigated the antitumor effect of ZBB-006 and its potential mechanisms in the human hepatocellular carcinoma cell line HepG2, both in vitro and in vivo. We found that oral administration of ZBB-006 effectively suppressed the growth of HepG2 xenograft tumor in nude mice without body weight decline as compared with the control group. Meanwhile, the growth inhibitory effect of ZBB-006 on HepG2 cells was observed with MTT assay. Apoptosis induced by ZBB-006 in HepG2 cells was evidenced by DAPI staining and Annexin V/PI double staining assay. ZBB-006 also dissipated the mitochondrial membrane potential (ΔΨm) apparently as revealed by JC-1 staining. Furthermore, the cleavage of PARP, activation of caspase-3 and caspase-9 but not caspase-8 was demonstrated by western blot assay both in vitro and in vivo. Additionally, the proapoptotic protein Bax was markedly elevated, while the antiapoptotic protein Bcl-2 was downregulated. Collectively, our data indicated that ZBB-006 exerted a strong antitumor effect on HepG2 cells by initiating the mitochondrial-dependent apoptosis, and it has potential to be explored as a new promising therapeutic agent against human hepatoma. Topics: Animals; Apoptosis; Benzimidazoles; Carbocyanines; Carcinoma, Hepatocellular; Cell Growth Processes; Diterpenes; Hep G2 Cells; Humans; Liver Neoplasms; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred BALB C; Mice, Nude; Xenograft Model Antitumor Assays | 2010 |