5--o-caffeoylquinic-acid and Bacterial-Infections

5--o-caffeoylquinic-acid has been researched along with Bacterial-Infections* in 1 studies

Reviews

1 review(s) available for 5--o-caffeoylquinic-acid and Bacterial-Infections

ArticleYear
Antibacterial and antioxidant activities for natural and synthetic dual-active compounds.
    European journal of medicinal chemistry, 2018, Oct-05, Volume: 158

    Antimicrobial resistance is widely recognized as a grave threat to global health in the 21st century, since the past decades have seen a dramatic increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. New antimicrobial agents are urgently required, particularly in the treatment of chronic infections such as cystic fibrosis, often associated with persistent colonization by drug-resistant pathogens and epithelial damage by pulmonary oxidative stress. In such events, it would be favourable to find agents that could have antioxidant and antibacterial activities combined in one molecule. The discovery of compounds that can show a dual-target activity considerably increased in the last years, reflecting the growing confidence that this new approach could lead to better therapeutic solutions for complex multigenic diseases. The aim of this review is to report those natural and synthetic compounds displaying significant antioxidant and antibacterial activities. In recent years there has been a growing attention on plant-derived antimicrobials as an alternative to antibiotics, for their efficacy and low tendency in developing bacterial resistance. Moreover, it was found that some natural products could enhance the activity of common antibiotics displaying a synergistic effect. We then report some selected synthetic compounds with an in-built capacity to act on two targets or with the combination in a single structure of two pharmacophores with antioxidant and antibacterial activities. Recent literature instances were screened and the most promising examples of dual-active antibacterial-antioxidant molecules were highlighted.

    Topics: Animals; Anti-Bacterial Agents; Antioxidants; Bacteria; Bacterial Infections; Biological Products; Drug Design; Drug Discovery; Humans; Lactams; Oxidative Stress; Plants; Polyphenols

2018