5--guanylylmethylenebisphosphonate and Glioma

5--guanylylmethylenebisphosphonate has been researched along with Glioma* in 1 studies

Other Studies

1 other study(ies) available for 5--guanylylmethylenebisphosphonate and Glioma

ArticleYear
Opioids, noradrenaline and GTP analogs inhibit cholera toxin activated adenylate cyclase in neuroblastoma x glioma hybrid cells.
    Journal of neurochemistry, 1981, Volume: 36, Issue:2

    D-Ala2-Met5-enkephalin, morphine, and noradrenaline inhibit the adenylate cyclase in homogenates of neuroblastoma x glioma hybrid cells in a dose-dependent manner even after the enzyme has been preactivated by cholera toxin. Half-maximal inhibition and extent of inhibition are the same with native or cholera toxin-activated enzyme. The inhibition caused by opioids or noradrenaline are antagonized by naloxone or phentolamine, respectively. The effect of D-Ala2-Met5-enkephalin on cholera toxin-activated enzyme is immediate in onset and rapidly reversed by the addition of naloxone. Guanyl-5'-yl-imidodiphosphate stimulates basal activity but inhibits the enzyme activated by cholera toxin or prostaglandin E1. Stimulation occurs at a concentration of 100 microM or above, inhibition even at 0.1 microM. The inhibitory effect of the non-hydrolysable GTP analog is antagonized by GTP. Guanyl-5'-yl-methylenediphosphonate, another nonhydrolysable GTP analog, inhibits basal as well as cholera toxin-stimulated or prostaglandin E1-stimulated adenylate cyclase. Other guanine derivatives such as GDP, GMP, cyclic GMP, guanyl-5'-yl-phosphoric acid amide and guanosine have no effect under the same conditions. The results may be taken as a piece of evidence for two separate guanyl nucleotide-binding sites accompanying the adenylate cyclase in the hybrid cells and mediating, respectively, stimulation and inhibition of the enzyme by hormones.

    Topics: Adenylyl Cyclases; Animals; Cell Line; Cholera Toxin; Clone Cells; Diphosphonates; Endorphins; Enkephalin, Methionine; Enkephalins; Glioma; Guanosine Monophosphate; Guanosine Triphosphate; Guanylyl Imidodiphosphate; Hybrid Cells; Kinetics; Mice; Morphine; Neuroblastoma; Norepinephrine; Rats

1981