5-(4-phenylbutoxy)psoralen and Disease-Models--Animal

5-(4-phenylbutoxy)psoralen has been researched along with Disease-Models--Animal* in 5 studies

Other Studies

5 other study(ies) available for 5-(4-phenylbutoxy)psoralen and Disease-Models--Animal

ArticleYear
The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion.
    Annals of clinical and translational neurology, 2021, Volume: 8, Issue:10

    The voltage-gated potassium channel Kv1.3, which is expressed on activated, disease-associated microglia and memory T cells, constitutes an attractive target for immunocytoprotection after endovascular thrombectomy (EVT). Using young male mice and rats we previously demonstrated that the Kv1.3 blocker PAP-1 when started 12 h after reperfusion dose-dependently reduces infarction and improves neurological deficit on day 8. However, these proof-of-concept findings are of limited translational value because the majority of strokes occur in patients over 65 and, when considering overall lifetime risk, in females. Here, we therefore tested whether Kv1.3 deletion or delayed pharmacological therapy would be beneficial in females and aged animals.. Kv1.3 deletion provided no significant benefit in young females but improved outcomes in young males, old males, and old females compared with wild-type controls of the same sex. Delayed PAP-1 treatment improved outcomes in both young and old females. In old females, Kv1.3 deletion and PAP-1 treatment significantly reduced Iba-1 and CD3 staining intensity in the ipsilateral hemisphere.. Our preclinical studies using aged and female mice further validate Kv1.3 inhibitors as potential adjunctive treatments for reperfusion therapy in stroke by providing both genetic and pharmacological verification.

    Topics: Age Factors; Animals; Combined Modality Therapy; Disease Models, Animal; Female; Ficusin; Infarction, Middle Cerebral Artery; Kv1.3 Potassium Channel; Male; Mice; Mice, Inbred C57BL; Reperfusion; Stroke

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept.
    Brain : a journal of neurology, 2018, 02-01, Volume: 141, Issue:2

    Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-β oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-β oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-β oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-β aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-β uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Animals, Newborn; Avoidance Learning; Cells, Cultured; Disease Models, Animal; Exploratory Behavior; Ficusin; Gene Expression Regulation; Kv1.3 Potassium Channel; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Mutation; Peptide Fragments; Potassium Channel Blockers; Presenilin-1; Shab Potassium Channels

2018
Kv1.3 blockers ameliorate allergic contact dermatitis by preferentially suppressing effector memory T cells in a rat model.
    Clinical and experimental dermatology, 2013, Volume: 38, Issue:8

    The Kv1.3 voltage-gated potassium channel is selectively upregulated upon activation in effector memory T (TEM ) cells in inflamed tissue, and plays an important role in maintenance of T-cell activation. Although Kv1.3 blockers have been shown to ameliorate allergic contact dermatitis (ACD) in a rat model, it remains unknown whether the effect of Kv1.3 blockers on ACD is mediated by suppressing TEM cell function and/or whether naive T-cells or central memory T (TCM ) cells are influenced.. To analyse the detailed mechanism of Kv1.3 blockers in a rat model of ACD.. We examined the effects of a Kv1.3 blocker on inflammation and production of the effector cytokine interferon (IFN)-γ in inflamed tissue in rat ACD. Single-cell suspensions were isolated from inflamed rat ears (TEM cells), and regional lymph nodes (naive T/TCM cells), and the effect of Kv1.3 blockers on anti-CD3-stimulated IFN-γ production in vitro was measured.. The Kv1.3 blocker significantly suppressed ear inflammation and IFN-γ production at the protein level in vivo. It also suppressed in vitro IFN-γ production from TEM cells from inflamed tissues, but did not suppress the function of naive T/TCM cells from lymph nodes.. We found that the Kv1.3 blocker ameliorated ACD by inhibiting TEM cell functions only, thus Kv1.3 blockers could be a potentially selective therapeutic agent for TEM cell-mediated inflammatory skin diseases without producing harmful side-effects.

    Topics: Animals; Cells, Cultured; Dermatitis, Allergic Contact; Disease Models, Animal; Ear; Female; Ficusin; Immunologic Memory; Interferon-gamma; Kv1.3 Potassium Channel; Lymph Nodes; Potassium Channel Blockers; Rats; T-Lymphocytes

2013