4-phenyl-1-(4-phenylbutyl)piperidine has been researched along with Cerebral-Infarction* in 3 studies
3 other study(ies) available for 4-phenyl-1-(4-phenylbutyl)piperidine and Cerebral-Infarction
Article | Year |
---|---|
sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine affords neuroprotection from focal ischemia with prolonged reperfusion.
We previously showed that the intravenous administration of the potent final sigma(1)-receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine (PPBP) provides neuroprotection against transient focal cerebral ischemia and that the protection depends on treatment duration. We tested the hypothesis that PPBP would provide neuroprotection in a model of transient focal ischemia and 7 days of reperfusion in the rat as assessed with neurobehavioral outcome and infarction volume.. Under the controlled conditions of normoxia, normocarbia, and normothermia, halothane-anesthetized male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion (MCAO) with the intraluminal suture occlusion technique. We used laser Doppler flowmetry to assess MCAO. At 60 minutes after the onset of ischemia, rats were randomly assigned to 1 of 4 treatment groups in a blinded fashion and received a continuous intravenous infusion of control saline or 0.1, 1, or 10 micromol. kg(-1). h(-1) PPBP for 24 hours. Neurobehavioral evaluation was performed at baseline (3 to 4 days before MCAO) and at 3 and 7 days of reperfusion. Infarction volume was assessed with triphenyltetrazolium chloride staining on day 7 of reperfusion in all rats.. Triphenyltetrazolium chloride-determined infarction volume of ipsilateral cortex was smaller in rats treated with 10 micromol. kg(-1). h(-1) PPBP (n=15, 68+/-12 mm(3), 18+/-3% of contralateral structure, P<0.05) (mean+/-SEM) compared with corresponding rats treated with saline (n=15, 114+/-11 mm(3), 31+/-3% of contralateral structure). PPBP did not provide significant neuroprotection in the caudoputamen complex. Although MCAO was associated with several alterations in behavior, the treatment with PPBP had no effect on behavioral outcomes.. The data demonstrate that the potent final sigma(1)-receptor ligand PPBP decreases cortical infarction volume without altering neurobehavior after transient focal ischemia and prolonged reperfusion in the rat. Topics: Animals; Behavior, Animal; Brain Ischemia; Cerebral Infarction; Drug Administration Schedule; Haloperidol; Ligands; Male; Neuroprotective Agents; Rats; Rats, Wistar; Receptors, sigma; Reperfusion Injury | 2000 |
Neuroprotection from focal ischemia by 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) is dependent on treatment duration in rats.
The IV administration of the potent sigma1-receptor ligand 4-phenyl-1-(4-phenylbutyl)piperidine (PPBP) provides neuroprotection against focal cerebral ischemia. We tested the hypothesis that prolonged, continuous administration of PPBP would provide further neuroprotection in a rat model of transient focal ischemia and reperfusion. Under controlled conditions of normoxia, normocarbia, and normothermia, halothane-anesthetized male Wistar rats were subjected to 2 h of middle cerebral artery occlusion by the intraluminal occlusion technique. Sixty minutes after the onset of ischemia, rats were randomly assigned to six treatment groups to receive a continuous IV infusion of PPBP (1 micromol . kg(-1). h(-1) for 1, 2, 3, or 4 days or saline for 1 or 4 days. The infarction volume was assessed by triphenyltetrazolium chloride (TFC) staining on Day 4 after ischemia in all rats. The TTC-determined infarction volume of the ipsilateral cerebral cortex was smaller in rats treated with PPBP for 1 day (42+/-13 mm3; 10%+/-3% of ipsilateral hemisphere; P < 0.05) (mean+/-SEM) compared with that in corresponding 1-day control rats (124+/-22 mm; 29%+/-5% of ipsilateral hemisphere; P < 0.05) or 4-day control rats (112+/-10 mm; 26%+/-2% of ipsilateral hemisphere; P < 0.05). Cortical infarction volumes in 2-, 3-, and 4-day PPBP-treated rats were not different compared with 1- and 4-day saline-treated controls. These data demonstrate that the sigma1(-receptor ligand PPBP attenuates ischemic injury when administration is initiated 60 min after the onset of focal ischemia but that prolonged continuous treatment with PPBP beyond 24 h provides no neuroprotection.. sigma-Ligands decrease infarction size in various animal models when given after the onset of stroke. Prolonged treatment with a potent sigma-ligand is associated with loss of therapeutic efficacy for this compound. Topics: Animals; Brain Ischemia; Cerebral Infarction; Haloperidol; Infusions, Intravenous; Male; Neuroprotective Agents; Rats; Rats, Wistar; Reperfusion; Time Factors | 1998 |
PPBP [4-phenyl-1-(4-phenylbutyl) piperidine] decreases brain injury after transient focal ischemia in rats.
We tested the hypothesis that intravenous administration of the potent sigma-receptor ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) during transient focal ischemia would decrease postischemic brain infarction volume in rats.. Rats underwent intravascular focal ischemia for 2 hours followed by 22 hours of reperfusion. Halothane anesthesia was used only during initiation and cessation of ischemia. Rats received saline (n = 10) or 1 mumol/kg per hour PPBP (n = 10) by continuous intravenous infusion starting 1 hour after the initiation of ischemia and continuing through 22 hours of reperfusion.. There was no difference between groups in blood pressure, arterial blood gas values, and body temperature. Triphenyltetrazolium-determined infarction volume of ipsilateral cerebral cortex (saline, 39 +/- 6%; PPBP, 21 +/- 7% of ipsilateral hemisphere; mean +/- SEM) and striatum (saline, 68 +/- 6%; PPBP, 33 +/- 8% of ipsilateral striatum) was smaller in rats treated with PPBP than in rats treated with saline.. These data indicate that sigma-receptors may play an important role in the mechanism of injury both in cortex and striatum after 2 hours of transient focal ischemia in rats. Because PPBP afforded protection when administered at the end of ischemia and during reperfusion, sigma-receptors may influence the progression of injury in ischemic border regions. Topics: Animals; Cerebral Infarction; Disease Models, Animal; Haloperidol; Infusions, Intravenous; Ischemic Attack, Transient; Male; Neuroprotective Agents; Rats; Receptors, sigma; Time Factors; Treatment Outcome | 1996 |