4-oxofenretinide has been researched along with Ovarian-Neoplasms* in 4 studies
1 trial(s) available for 4-oxofenretinide and Ovarian-Neoplasms
Article | Year |
---|---|
Identification of the fenretinide metabolite 4-oxo-fenretinide present in human plasma and formed in human ovarian carcinoma cells through induction of cytochrome P450 26A1.
The synthetic retinoid fenretinide (4-HPR) exhibits preventive and therapeutic activity against ovarian tumors. An unidentified polar metabolite was previously found in 4-HPR-treated subjects and in A2780 human ovarian carcinoma cells continuously treated with 4-HPR (A2780/HPR). The metabolite and the enzyme involved in its formation in tumor cells are herein identified.. The metabolite was identified by mass spectrometry in A2780/HPR cell extracts and in plasma from 11 women participating in a phase III trial and treated with 200 mg/d 4-HPR for 5 years. The expression of proteins involved in retinoid metabolism and transport, cytochrome P450 26A1 (CYP26A1), cellular retinol-binding protein I (CRBP-I), and cellular retinoic acid-binding protein I and II (CRABP-I, CRABP-II) were evaluated in tumor cells by reverse transcription-PCR and Western blot analyses. Overexpression of CYP26A1 and retinoic acid receptors (RARs) in A2780 cells were obtained by cDNAs transfection.. The polar metabolite was 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) i.e., an oxidized form of 4-HPR with modification in position 4 of the cyclohexene ring. 4-oxo-4-HPR plasma levels were slightly lower (0.52 +/- 0.17 micromol/L) than those of the parent drug (0.84 +/- 0.53 micromol/L) and of the already identified metabolite N-(4-methoxyphenyl)retinamide (1.13 +/- 0.85 micromol/L). In A2780/HPR cells continuously treated with 4-HPR and producing 4-oxo-4-HPR, CYP26A1 and CRBP-I were markedly up-regulated compared with A2780 untreated cells. In A2780 cells, not producing 4-oxo-4-HPR, overexpression of CYP26A1 caused formation of 4-oxo-4-HPR, which was associated with no change in 4-HPR sensitivity. Moreover, the addition of 4-oxo-4-HPR to A2780 cells inhibited cell proliferation. Elevated levels of CYP26A1 protein and metabolism of 4-HPR to 4-oxo-4-HPR were found in A2780 cells transfected with RARbeta and to a lesser extent in those transfected with RARgamma.. A new metabolite of 4-HPR, 4-oxo-4-HPR, present in human plasma and in tumor cells, has been identified. The formation of this biologically active metabolite in tumor cells was due to CYP26A1 induction and was influenced by RAR expression. Moreover evidence was provided that 4-HPR up-modulates the expression of CRBP-I transcript, which is lost during ovarian carcinogenesis. Topics: Anticarcinogenic Agents; Blotting, Western; Cell Line, Tumor; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; DNA, Complementary; Dose-Response Relationship, Drug; Female; Fenretinide; Genetic Vectors; Humans; Immunoblotting; Mass Spectrometry; Ovarian Neoplasms; Oxygen; Retinoic Acid 4-Hydroxylase; Retinol-Binding Proteins; Retinol-Binding Proteins, Cellular; Retinol-Binding Proteins, Plasma; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sensitivity and Specificity; Time Factors; Transfection; Tretinoin; Up-Regulation | 2004 |
3 other study(ies) available for 4-oxofenretinide and Ovarian-Neoplasms
Article | Year |
---|---|
Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids.
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells. Topics: Antineoplastic Agents; Cell Line, Tumor; Female; Fenretinide; Humans; Ovarian Neoplasms; Sphingolipids | 2010 |
Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: a novel mechanism of retinoid growth-inhibitory activity.
The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR), a metabolite of fenretinide (4-HPR) present in plasma of 4-HPR-treated patients, is very effective in inducing growth inhibition and apoptosis in several cancer cell lines. 4-Oxo-4-HPR and 4-HPR have different mechanisms of action because 4-oxo-4-HPR, unlike 4-HPR, causes marked cell accumulation in G2-M phase. Here, we investigated the molecular events involving 4-oxo-4-HPR-induced cell cycle perturbation in ovarian (A2780 and IGROV-1) and breast (T47D, estrogen receptor+ and BT-20, estrogen receptor-) cancer cells. 4-Oxo-4-HPR induced a delay of mitosis (with mitotic index increasing 5- to 6-fold in all cell lines) without progression beyond the anaphase, as shown by cyclin B1 expression. 4-Oxo-4-HPR induced multipolar spindle formation and phosphorylation of BUBR1, resulting in activation of the spindle checkpoint. Multipolar spindles were not due to impairment of pole-focusing process, loss of centrosome integrity, or modulation of the expression levels of molecules associated with spindle aberrations (Kif 1C, Kif 2A, Eg5, Tara, tankyrase-1, centractin, and TOGp). We show here that 4-oxo-4-HPR targets microtubules because, in treated cells, it interfered with the reassembly of cold-depolymerized spindle microtubules and decreased the polymerized tubulin fraction. In cell-free assays, 4-oxo-4-HPR inhibited tubulin polymerization (50% inhibition of microtubule assembly at 5.9 micromol/L), suggesting a direct molecular interaction with tubulin. In conclusion, by showing that 4-oxo-4-HPR causes mitotic arrest through antimicrotubule activities, we delineate a new molecular mechanism for a retinoid. Topics: Actins; Antimitotic Agents; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; Female; Fenretinide; Gene Expression Regulation, Neoplastic; Growth Inhibitors; Humans; Kinesins; Microfilament Proteins; Microscopy, Fluorescence; Microtubule-Associated Proteins; Microtubules; Mitotic Index; Ovarian Neoplasms; Polymers; Retinoids; Reverse Transcriptase Polymerase Chain Reaction; Spindle Apparatus; Tankyrases; Tubulin | 2009 |
4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines.
4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a recently identified metabolite of fenretinide (4-HPR). We explored the effectiveness of 4-oxo-4-HPR in inducing cell growth inhibition in ovarian, breast, and neuroblastoma tumor cell lines; moreover, we investigated the molecular events mediating this effect in two ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/HPR) to 4-HPR. 4-oxo-4-HPR was two to four times more effective than 4-HPR in most cell lines, was effective in both 4-HPR-sensitive and 4-HPR-resistant cells, and, in combination with 4-HPR, caused a synergistic effect. The tumor growth-inhibitory effects of 4-oxo-4-HPR seem to be independent of nuclear retinoid receptors (RAR), as indicated by the failure of RAR antagonists to inhibit its effects and by its poor ability to bind and transactivate RARs. Unlike 4-HPR, which only slightly affected the G(1) phase of the cell cycle, 4-oxo-4-HPR caused a marked accumulation of cells in G(2)-M. This effect was associated with a reduction in the expression of regulatory proteins of G(2)-M (cyclin-dependent kinase 1 and cdc25c) and S (cyclin A) phases, and with an increase in the expression of apoptosis-related proteins, such as p53 and p21. Apoptosis was induced by 4-oxo-4-HPR in both 4-HPR-sensitive and 4-HPR-resistant cells and involved activation of caspase-3 and caspase-9 but not caspase-8. We also showed that 4-oxo-4-HPR, similarly to 4-HPR, increased reactive oxygen species generation and ceramide levels by de novo synthesis. In conclusion, 4-oxo-4-HPR is an effective 4-HPR metabolite that might act as therapeutic agent per se and, when combined with 4-HPR, might improve 4-HPR activity or overcome 4-HPR resistance. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Breast Neoplasms; Caspase 8; Caspase 9; Caspases; Cell Cycle Proteins; Cell Division; Cell Growth Processes; Cell Line, Tumor; Ceramides; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Female; Fenretinide; G2 Phase; Humans; Neuroblastoma; Ovarian Neoplasms; Reactive Oxygen Species | 2006 |