4-oxofenretinide and Breast-Neoplasms

4-oxofenretinide has been researched along with Breast-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for 4-oxofenretinide and Breast-Neoplasms

ArticleYear
Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: a novel mechanism of retinoid growth-inhibitory activity.
    Molecular cancer therapeutics, 2009, Volume: 8, Issue:12

    The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR), a metabolite of fenretinide (4-HPR) present in plasma of 4-HPR-treated patients, is very effective in inducing growth inhibition and apoptosis in several cancer cell lines. 4-Oxo-4-HPR and 4-HPR have different mechanisms of action because 4-oxo-4-HPR, unlike 4-HPR, causes marked cell accumulation in G2-M phase. Here, we investigated the molecular events involving 4-oxo-4-HPR-induced cell cycle perturbation in ovarian (A2780 and IGROV-1) and breast (T47D, estrogen receptor+ and BT-20, estrogen receptor-) cancer cells. 4-Oxo-4-HPR induced a delay of mitosis (with mitotic index increasing 5- to 6-fold in all cell lines) without progression beyond the anaphase, as shown by cyclin B1 expression. 4-Oxo-4-HPR induced multipolar spindle formation and phosphorylation of BUBR1, resulting in activation of the spindle checkpoint. Multipolar spindles were not due to impairment of pole-focusing process, loss of centrosome integrity, or modulation of the expression levels of molecules associated with spindle aberrations (Kif 1C, Kif 2A, Eg5, Tara, tankyrase-1, centractin, and TOGp). We show here that 4-oxo-4-HPR targets microtubules because, in treated cells, it interfered with the reassembly of cold-depolymerized spindle microtubules and decreased the polymerized tubulin fraction. In cell-free assays, 4-oxo-4-HPR inhibited tubulin polymerization (50% inhibition of microtubule assembly at 5.9 micromol/L), suggesting a direct molecular interaction with tubulin. In conclusion, by showing that 4-oxo-4-HPR causes mitotic arrest through antimicrotubule activities, we delineate a new molecular mechanism for a retinoid.

    Topics: Actins; Antimitotic Agents; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; Female; Fenretinide; Gene Expression Regulation, Neoplastic; Growth Inhibitors; Humans; Kinesins; Microfilament Proteins; Microscopy, Fluorescence; Microtubule-Associated Proteins; Microtubules; Mitotic Index; Ovarian Neoplasms; Polymers; Retinoids; Reverse Transcriptase Polymerase Chain Reaction; Spindle Apparatus; Tankyrases; Tubulin

2009
4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines.
    Cancer research, 2006, Mar-15, Volume: 66, Issue:6

    4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a recently identified metabolite of fenretinide (4-HPR). We explored the effectiveness of 4-oxo-4-HPR in inducing cell growth inhibition in ovarian, breast, and neuroblastoma tumor cell lines; moreover, we investigated the molecular events mediating this effect in two ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/HPR) to 4-HPR. 4-oxo-4-HPR was two to four times more effective than 4-HPR in most cell lines, was effective in both 4-HPR-sensitive and 4-HPR-resistant cells, and, in combination with 4-HPR, caused a synergistic effect. The tumor growth-inhibitory effects of 4-oxo-4-HPR seem to be independent of nuclear retinoid receptors (RAR), as indicated by the failure of RAR antagonists to inhibit its effects and by its poor ability to bind and transactivate RARs. Unlike 4-HPR, which only slightly affected the G(1) phase of the cell cycle, 4-oxo-4-HPR caused a marked accumulation of cells in G(2)-M. This effect was associated with a reduction in the expression of regulatory proteins of G(2)-M (cyclin-dependent kinase 1 and cdc25c) and S (cyclin A) phases, and with an increase in the expression of apoptosis-related proteins, such as p53 and p21. Apoptosis was induced by 4-oxo-4-HPR in both 4-HPR-sensitive and 4-HPR-resistant cells and involved activation of caspase-3 and caspase-9 but not caspase-8. We also showed that 4-oxo-4-HPR, similarly to 4-HPR, increased reactive oxygen species generation and ceramide levels by de novo synthesis. In conclusion, 4-oxo-4-HPR is an effective 4-HPR metabolite that might act as therapeutic agent per se and, when combined with 4-HPR, might improve 4-HPR activity or overcome 4-HPR resistance.

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Breast Neoplasms; Caspase 8; Caspase 9; Caspases; Cell Cycle Proteins; Cell Division; Cell Growth Processes; Cell Line, Tumor; Ceramides; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Female; Fenretinide; G2 Phase; Humans; Neuroblastoma; Ovarian Neoplasms; Reactive Oxygen Species

2006