4-methylene-2-octyl-5-oxofuran-3-carboxylic-acid and Colitis

4-methylene-2-octyl-5-oxofuran-3-carboxylic-acid has been researched along with Colitis* in 2 studies

Other Studies

2 other study(ies) available for 4-methylene-2-octyl-5-oxofuran-3-carboxylic-acid and Colitis

ArticleYear
Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt.
    Cell death & disease, 2021, 10-12, Volume: 12, Issue:10

    Metformin, traditionally regarded as a hypoglycemic drug, has been studied in other various fields including inflammation. The specific mechanism of metformin's effect on immune cells remains unclear. Herein, it is verified that LPS-induced macrophages are characterized by enhanced endogenous fatty acid synthesis and the inhibition of fatty acid synthase (FASN) downregulates proinflammatory responses. We further show that metformin could suppress such elevation of FASN as well as proinflammatory activation in macrophages. In vivo, metformin treatment ameliorates dextran sulfate sodium (DSS)-induced colitis through impairing proinflammatory activation of colonic lamina propria mononuclear cells (LPMCs). The reduction of FASN by metformin hinders Akt palmitoylation, which further disturbs Akt membrane attachment and its phosphorylation. Metformin-mediated suppression of FASN/Akt pathway and its downstream MAPK signaling contributes to its anti-inflammatory role in macrophages. From the perspective of immunometabolism, our work points towards metformin utilization as an effective and potential intervention against macrophages-involved inflammatory diseases.

    Topics: 4-Butyrolactone; Animals; Cell Membrane; Colitis; Dextran Sulfate; Down-Regulation; Enzyme Activation; Fatty Acid Synthases; Inflammation; Intestinal Mucosa; Lipopolysaccharides; Lipoylation; Macrophages; Male; Metformin; Mice; Mice, Inbred C57BL; Palmitates; Phosphorylation; Proto-Oncogene Proteins c-akt; RAW 264.7 Cells; Signal Transduction; TOR Serine-Threonine Kinases; Transcription Factor RelA

2021
Fatty acid synthase inhibitor C75 ameliorates experimental colitis.
    Molecular medicine (Cambridge, Mass.), 2014, Jan-17, Volume: 20

    Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or dimethyl sulfoxide (DMSO) (vehicle) was administered intraperitoneally from d 2 to 6. Clinical parameters were monitored daily. Mice were euthanized on d 8 for histological evaluation and measurements of colon length, chemokine, cytokine and inflammatory mediator expression. C75 significantly reduced body weight loss from 23% to 15% on d 8, compared with the vehicle group. The fecal bleeding, diarrhea and colon histological damage scores in the C75-treated group were significantly lower than scores in the vehicle animals. Colon shortening was significantly improved after C75 treatment. C75 protected colon tissues from DSS-induced apoptosis by inhibiting caspase-3 activity. Macrophage inflammatory protein 2, keratinocyte-derived chemokine, myeloperoxidase activity and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β and IL-6) in the colon were significantly downregulated in the C75-treated group, compared with the vehicle group. Treatment with C75 in colitis mice inhibited the elevation of FASN, cyclooxygenase-2 and inducible nitric oxide synthase expression as well as IκB degradation in colon tissues. C75 administration alleviates the severity of colon damage and inhibits the activation of inflammatory pathways in DSS-induced colitis. Thus, inhibition of FASN may represent an attractive therapeutic potential for treating IBD.

    Topics: 4-Butyrolactone; Animals; Chemokines; Colitis; Colon; Cyclooxygenase 2; Cytokines; Dextran Sulfate; Disease Models, Animal; Fatty Acid Synthases; Gene Expression Regulation; Humans; Male; Mice; Mice, Inbred C57BL; Nitric Oxide Synthase Type II

2014