4-hydroxyestrone has been researched along with Cell-Transformation--Neoplastic* in 3 studies
3 other study(ies) available for 4-hydroxyestrone and Cell-Transformation--Neoplastic
Article | Year |
---|---|
Evidence that a metabolite of equine estrogens, 4-hydroxyequilenin, induces cellular transformation in vitro.
Estrogen replacement therapy has been correlated with an increased risk of developing hormone-dependent cancers. 4-Hydroxyequilenin (4-OHEN) is a catechol metabolite of equilenin and equilin which are components of the estrogen replacement formulation marketed under the name of Premarin (Wyeth-Ayerst). Previously, we showed that 4-OHEN autoxidizes to potent cytotoxic quinoids which can consume reducing equivalents and molecular oxygen, and cause a variety of DNA lesions, including formation of bulky stable adducts, apurinic sites, and oxidation of the phosphate-sugar backbone and purine/pyrimidine bases [Bolton, J. L., Pisha, E., Zhang, F., and Qiu, S. (1998) Chem. Res. Toxicol. 11, 1113-1127]. All of these deleterious effects could contribute to the cytotoxic/genotoxic effects of equine estrogens in vivo. In the study presented here, we studied the oxidative and carcinogenic potential of 4-OHEN and the catechol metabolite of the endogenous estrogen, 4-hydroxyestrone (4-OHE), in the JB6 clone 41 5a and C3H 10T(1/2) murine fibroblast cells. The relative ability of 4-OHEN and 4-OHE to induce oxidative stress was measured in these cells by oxidative cleavage of 2',7'-dichlorodiacylfluorosceindiacetate to dichlorofluoroscein. 4-OHEN (1 microM) displayed an increase in the level of reactive oxygen species comparable to that observed with 100 microM H(2)O(2). In contrast, 4-OHE demonstrated antioxidant capabilities in the 5-50 microM range. With both cell lines, we assessed single-strand DNA cleavage using the comet assay and the formation of oxidized DNA bases, such as 8-oxodeoxyguanosine, utilizing the Trevigen Fpg comet assay. 4-OHEN caused single-strand breaks and oxidized bases in a dose-dependent manner in both cell lines, whereas 4-OHE did not induce DNA damage. Since oxidative stress has been implicated in cellular transformation, we used the JB6 clone 41 5a anchorage independence assay to ascertain the relative ability of 4-OHEN and 4-OHE to act as tumor promoters. 4-OHEN caused a slight but significant increase in the extent of cellular transformation at the 100 nM dose; however, in the presence of NADH, which catalyzes redox cycling of 4-OHEN, the transformation ability of 4-OHEN was dramatically increased. 4-OHE did not induce transformation of the JB6 clone 41 5a in the 0.1-10 microM range. The initiation, promotion, and complete carcinogenic transformation potentials of both metabolites were measured in the C3H 10T(1/2) cells. 4-OHEN demonstrated Topics: Animals; Carcinogens; Cell Line; Cell Transformation, Neoplastic; DNA Damage; Epidermal Cells; Epidermis; Equilenin; Estradiol Congeners; Fibroblasts; Horses; Hydroxyestrones; Mice; Mice, Inbred C3H; Reactive Oxygen Species | 2001 |
The ability of four catechol estrogens of 17beta-estradiol and estrone to induce DNA adducts in Syrian hamster embryo fibroblasts.
Catechol estrogens are considered critical intermediates in estrogen-induced carcinogenesis. We demonstrated previously that 17beta-estradiol (E(2)), estrone (E(1)) and four of their catechol estrogens, 2- and 4-hydroxyestradiols (2- and 4-OHE(2)), and 2- and 4-hydroxyestrones (2- and 4-OHE(1)) induce morphological transformation in Syrian hamster embryo (SHE) fibroblasts, and the transforming abilities vary as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) vertical line E(2), E(1). To examine the involvement of catechol estrogens in the initiation of hormonal carcinogenesis, we studied the ability of E(2), E(1) and their catechol estrogens to induce DNA adducts in SHE cells by using a (32)P-post-labeling assay. DNA adducts were detected in cells treated with each of all the catechol estrogens at concentrations of 10 microg/ml for 1 h and more. 2- or 4-OHE(2) formed a single DNA adduct, which was chromatographically distinct from each other. In contrast, 2- or 4-OHE(1) produced one major and one minor adduct, and the two adducts formed by each catechol estrogen exhibited identical mobilities on the chromatograms. Neither E(2) nor E(1) at concentrations up to 30 microg/ml induced DNA adducts. The abilities of the estrogens to induce DNA adducts were ranked as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) > > E(2), E(1), which corresponds well to the transforming and carcinogenic abilities of the estrogens. In addition, the level of DNA adducts induced by the catechol estrogens was markedly decreased by co-treatment of cells with the antioxidant L-ascorbic acid. The results indicate the possible involvement of oxidative metabolites of catechol estrogens of E(2) and E(1) in the initiation of endogenous estrogen-induced carcinogenesis. Topics: Animals; Antioxidants; Ascorbic Acid; Cell Survival; Cell Transformation, Neoplastic; Cricetinae; DNA Adducts; Estradiol; Estrogens, Catechol; Fibroblasts; Hydroxyestrones; Mesocricetus | 2001 |
Conversion of estrone to 2- and 4-hydroxyestrone by hamster kidney and liver microsomes: implications for the mechanism of estrogen-induced carcinogenesis.
As part of an ongoing investigation of the role of metabolic activation of estrogens in the genesis of cancers such as estrogen-induced renal tumors in hamsters, we have 1) determined steroid-17 beta-oxidoreductase activity of microsomes and cytosol prepared from hamster kidney and liver; 2) compared the rates of 2-, 4-, and 16 alpha-hydroxylations of estrone by microsomes from hamster kidney and liver; and 3) determined the rates of inactivation of 2- and 4-hydroxyestrone by catechol-O-methyltransferase from hamster kidney and by purified enzyme. Microsomal steroid-17 beta-oxidoreductase activity in hamster kidney and liver was low and favored the conversion of estrone to estradiol. Cytosolic steroid-17 beta-oxidoreductase activity was only barely detectable in both liver and kidney. Using hepatic microsomes, the rate of 2-hydroxylation of estrone was comparable to that found previously using estradiol as substrate, whereas 4-hydroxylation of estrone was double that of estradiol. Using renal microsomes, the rates of 2- and 4-hydroxylation of estrone were 10- to 20-fold higher than those with estradiol as substrate, and the ratio of 2- to 4-hydroxylation was about 2:1. Fadrozole hydrochloride was an equally good inhibitor of rates of 2- and 4-hydroxylation of estrone (20 microM) by hepatic microsomes (IC50, approximately 25 microM). Corresponding IC50 values with renal microsomes were less than 2 microM, and 2-hydroxylation of estrone was inhibited by Fadrozole hydrochloride up to 15% more than 4-hydroxylation. Treatment of hamsters with estradiol for 2 months decreased rates of 2- and 4-hydroxylation of estrone by renal microsomes by approximately 95%. The rate of conversion of estrone to 16 alpha-hydroxyestrone by hepatic microsomes was 10-20% that of 2-hydroxylation. Renal microsomes catalyzed 16 alpha-hydroxylation of estrone at an even lower rate (approximately 5% of that of 2-hydroxylation). Rates of O-methylation of 2- and 4-hydroxyestrone by hamster kidney cytosol were comparable to those of 2- and 4-hydroxyestradiol. In conclusion, conversion of estrone to its catechol metabolites by microsomes of hamster kidney, a target organ of estrogen-induced carcinogenesis, is quantitatively more important than the conversion to 16 alpha-hydroxyestrone. The findings are consistent with the postulated role of catechol estrogens generated in situ in estrone-induced carcinogenesis. Topics: Animals; Catechol O-Methyltransferase; Cell Transformation, Neoplastic; Chromatography, Gas; Cricetinae; Estrogens; Estrone; Hydroxyestrones; Hydroxylation; Kidney; Male; Mesocricetus; Microsomes; Microsomes, Liver; Steroid 16-alpha-Hydroxylase | 1994 |